§ 11. Свойства функций

253.

a) f(x)=y=5x.

Возьмем произвольные x_1, x_2 , такие что $x_1 < x_2$. Тогда, умножая неравенство на 5, получаем: $f(x_1)=5x_1<5x_2=f(x_2)$

 $f(x_1) < f(x_2)$. Функция возрастает.

б) f(x)=y=2x+3.

Возьмем произвольные x_1, x_2 : $x_1 < x_2 \Leftrightarrow 2x_1 < 2x \Leftrightarrow 2x_1 + 3 < 2x_2 + 3$.

 $f(x_1) < f(x_2)$. Функция возрастает.

B) f(x)=y=2x-3.

Возьмем произвольные $x_1, x_2: x_1 < x_2 \Leftrightarrow 2x_1 < 2x_2 \Leftrightarrow 2x_1 - 3 < 2x_2 - 3$. $f(x_1) < f(x_2)$. Функция возрастает.

r) $f(x)=y=\frac{x}{2}+4$.

Для произвольных x_1 и x_2 , таких что $x_1 < x_2$, имеем:

$$x_1 < x_2 \Leftrightarrow \frac{x_1}{2} < \frac{x_2}{4} \Leftrightarrow \frac{x_1}{2} + 4 < \frac{x_2}{2} + 4$$

 $f(x_1) < f(x_2)$. Функция возрастает.

254.

a) $f(x)=y=x^3$.

Для произвольных x_1 и x_2 , таких что $x_1 < x_2$, имеем:

 $x_1 < x_2 \iff x_1^3 < x_2^3$. $f(x_1) < f(x_2)$. Функция возрастает.

б) $f(x)=y=2x^3$.

Для произвольных x_1 и x_2 , таких что $x_1 \le x_2$, имеем:

 $x_1 < x_2 \Leftrightarrow x_1^3 < x_2^3 \Leftrightarrow 2x_1^3 < 2x_2^3$. $f(x_1) < f(x_2)$. Функция возрастает. в) $f(x) = y = x^3 + 1$.

Для произвольных x_1 и x_2 , таких что $x_1 < x_2$, имеем: $x_1 < x_2 \Leftrightarrow x_1^3 < x_2^3 \Leftrightarrow x_1^3 + 1 < x_2^3 + 1$. $f(x_1) < f(x_2)$. Функция возрастает.

г) $f(x)=y=\frac{x^3}{2}$. Для произвольных x_1 и x_2 , таких что $x_1< x_2$, имеем:

 $x_1 < x_2 \Leftrightarrow x_1^3 < x_2^3 \Leftrightarrow \frac{x_1^3}{2} < \frac{x_2^3}{2}$. $f(x_1) < f(x_2)$. Функция возрастает.

255.

a) $f(x)=y=x^2, x \ge 0$.

Для произвольных положительных (точнее неотрицательных) x_1 и x_2 , из неравенства $x_1 < x_2$ следует $x_1^2 < x_2^2$. $f(x_1) < f(x_2)$. Функция возрастает.

6)
$$f(x)=y=-\frac{1}{x}, x<0.$$

Для произвольных отрицательных x_1 и x_2 , из неравенства $x_1 \le x_2$

следует, что $\frac{1}{x_1} > \frac{1}{x_2}$; $-\frac{1}{x_1} > -\frac{1}{x_2}$. $f(x_1) < f(x_2)$. Функция возрастает.

B)
$$f(x)=y=-\frac{1}{x}, x>0.$$

Для произвольных положительных x_1 и x_2 , из неравенства $x_1 \le x_2$

следует, что $\frac{1}{x_1} > \frac{1}{x_2}$; $-\frac{1}{x_1} < -\frac{1}{x_2}$. $f(x_1) < f(x_2)$. Функция возрастает.

$$\Gamma$$
) $f(x)=y=3x^2, x\geq 0$

Для произвольных неотрицательных x_1 и x_2 , из неравенства $x_1 < x_2$ следует $x_1^2 < x_2^2$; $3x_1^2 < 3x_2^2$. То есть $f(x_1) < f(x_2)$. Функция возрастает.

256.

a) f(x) = -5x.

Для произвольных x_1 и x_2 , $x_1 < x_2$ имеем:

 $x_1 < x_2 \Leftrightarrow -5x_1 > -5x_2$. $f(x_1) > f(x_2)$. Функция убывает.

б)
$$f(x)=y=5-2x$$
.

Для произвольных x_1 и x_2 , $x_1 < x_2$ имеем:

 $x_1 < x_2 \Leftrightarrow -2x_1 > -2x_2$. $5-2x_1 > 5-2x_2$, $f(x_1) > f(x_2)$. Функция убывает.

B)
$$f(x)=y=-7x+1$$
.

Для произвольных x_1 и x_2 , $x_1 < x_2$ имеем:

 $x_1 < x_2 \Leftrightarrow -7x_1 > -7x_2 - 7x_1 + 1 > -7x_2 + 1$, $f(x_1) > f(x_2)$. Функция убывает.

г) $f(x)=y=4-\frac{x}{3}$. Для произвольных x_1 и $x_2, x_1 < x_2$ имеем:

$$x_1 < x_2 \Leftrightarrow -\frac{x_1}{3} > -\frac{x_2}{3} \Leftrightarrow 4 -\frac{x_1}{3} > 4 -\frac{x_2}{3}$$
 . $f(x_1) > f(x_2)$. Функция убывает.

а) $f(x)=y=-x^3$. Для произвольных x_1 и x_2 , $x_1 < x_2$ имеем:

 $x_1 < x_2 \Leftrightarrow x_1^3 < x_2^3 \Leftrightarrow -x_1^3 > -x_2^3$. $f(x_1) > f(x_2)$. Функция убывает.

б) $f(x)=y=-3x^3$. Для произвольных x_1 и x_2 , $x_1 < x_2$ имеем: $x_1 < x_2 \Leftrightarrow x_1^3 < x_2^3 \Leftrightarrow -3x_1^3 > -3x_2^3$. $f(x_1) > f(x_2)$. Функция убывает.

в) $f(x)=y=-\frac{x^3}{5}$. Для произвольных x_1 и $x_2, x_1 \le x_2$ имеем:

 $x_1 < x_2 \Leftrightarrow x_1^3 < x_2^3 \Leftrightarrow -\frac{x_1^3}{5} > \frac{x_2^3}{5}$. $f(x_1) > f(x_2)$. Функция убывает.

$$\Gamma$$
) $f(x)=y=-x^3+7$.

Для произвольных x_1 и x_2 , $x_1 < x_2$ имеем:

 $x_1 < x_2 \Leftrightarrow x_1^3 < x_2^3 \Leftrightarrow -x_1^3 > -x_2^3 \Leftrightarrow -x_1^3 + 7 > -x_2^3 + 7$, $f(x_1) > f(x_2)$. Функция убывает.

258.

a) $f(x)=y=x^2, x \le 0$.

Для отрицательных (точнее неположительных) x_1 и x_2 , $x_1 < x_2 \Leftrightarrow x_1^2 < x_2^2$

 $f(x_1) > f(x_2)$. Функция убывает.

б) $f(x)=y=-2x^2, x≥0.$

Для неотрицательных x_1 и x_2 , из неравенства $x_1 < x_2$ следует, что $x_1^2 < x_2^2 \Leftrightarrow$

 $-2x_1^2 > -2x_2^2$. $f(x_1) > f(x_2)$. Функция убывает.

B) $f(x)=y=3x^2, x \le 0$.

Для неположительных x_1 и x_2 из неравенства $x_1 < x_2$ следует, что $x_1^2 > x_2^2 \Leftrightarrow 3x_1^2 > 3x_2^2$. $f(x_1) > f(x_2)$. Функция убывает.

 Γ) $f(x)=y=-3x^2, x\geq 0$.

Для неотрицательных x_1 и x_2 , из неравенства $x_1 < x_2$ следует, что $x_1^2 < x_2^2 \Leftrightarrow$

 $-3x_1^2 > -3x_2^2$. $f(x_1) > f(x_2)$.

Функция убывает.

259

- а) Не ограничена ни сверху, ни снизу.
- б) Ограничена снизу, не ограничена сверху.
- в) Ограничена снизу, не ограничена сверху.
- г) Ограничена и сверху и снизу, то есть ограничена.

260

- а) Ограничена снизу, не ограничена сверху.
- б) Ограничена снизу, не ограничена сверху.
- в) Ограничена снизу, не ограничена сверху.
- г) Ограничена и сверху и снизу , то есть ограничена.

261

- а) Ограничена сверху, не ограничена снизу.
- б) Ограничена снизу, не ограничена сверху.
- в) Ограничена снизу, не ограничена сверху.
- г) Ограничена сверху, не ограничена снизу.

262.

а) Функция возрастающая, значит наименьшее значение будет при наименьшем значении аргумента, а наибольшее – при наибольшем значении аргумента.

$$y_{\min} = y(0)=3$$
. $y_{\max} = y(1)=5$.

6)
$$y_{\min} = -2$$
, $y_{\max} = 0$;

- в) $y_{\min} = y(0) = 1$. Функция неограничена сверху.
- г) Наименьшего значения нет. $y_{\text{max}} = y(2) = 2$.

$$y = \sqrt{x}$$

a) $x \in [0; +\infty)$, $y_{\min} = y(0) = 0$.

Наибольшего значения нет, так как функция сверху неограничена.

6)
$$x \in [0; 3]$$
. $y_{\min} = y(0) = 0$, $y_{\max} = y(3) = \sqrt{3}$;

B)
$$x \in [1; 4]$$
. $y_{\min} = y(1) = 1$, $y_{\max} = y(4) = 2$;

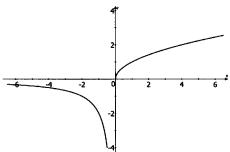
г) $x \in (0; 2]$. Наименьшего значения нет. $y_{\text{max}} = \sqrt{2}$.

264

- а) $y = \sqrt{x-4}$. $y_{\min} = 0$. Сверху функция неограничена.
- б) $y=3-\sqrt{x}$. $y_{\text{max}}=3$. Снизу функция неограничена.
- в) $y = \sqrt{x} + 2$. $y_{\min} = y(0) = 2$. Сверху функция неограничена.
- г) $y=4-\sqrt{x}$. $y_{\text{max}}=y(0)=4$. Снизу функция неограничена.

265

$$f(x) = \begin{cases} \frac{2}{x}, \text{ если } x < 0\\ \sqrt{x}, \text{ если } x \ge 0 \end{cases}.$$



- 1) D(f)= $(-\infty; +\infty)$.
- 2) Убывает при x < 0. Возрастает на $[0; +\infty)$.
- 3) Не ограничена ни снизу, ни сверху.
- 4) Нет ни наибольшего, ни наименьшего значения.
- 5) Непрерывна на (-∞; 0).

Непрерывна на (0; +∞).

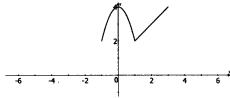
6) $E(f) = (-\infty; +\infty)$.

7) На (-∞; 0) выпукла вверх.

На [0; +∞) выпукла вверх.

266.

$$f(x) = \begin{cases} 4 - 2x^2, \text{ если } -1 \le x \le 1\\ x + 1, \text{ если } 1 < x \le 3 \end{cases}$$



- 1) D(f)=[-1; 3].
- 2) Возрастает на [-1; 0] и на [1; 3]. Убывает на [0; 1].
- 3) Ограничена.
- 4) Наибольшее значение $f_{\rm max} = 4$. Наименьшее: $f_{\rm min} = 2$
- 5) Непрерывна на [-1; 3].
- 6) E(f)=[2; 4].
- 7) Выпукла вверх на [-1; 1].

На [1; 3] функцию можно считать как выпуклой вверх, так и выпуклой вниз.

267.

a) $y=x^3+3x$.

Возьмем произвольные x_1 и x_2 . Пусть $x_1 < x_2$.

 $x_1 < x_2$; $3x_1 < 3x_2$, $x_1^3 < x_2^3$.

Сложим эти неравенства: $x_1^3 + 3x_1 < x_2^3 + 3x_2$; $f(x_1) < f(x_2)$.

Функция возрастает.

б) $y=x^4+3x$, x≥0.

Возьмем произвольные неотрицательные x_1 и x_2 . Пусть $x_1 < x_2$.

Тогда $x_1^4 < x_2^4$ и $3x_1 < 3x_2$.

Сложим эти неравенства.

 $x_1^4 + 3x_1 < x_2^4 + 3x_2$. $f(x_1) < f(x_2)$. Функция возрастает.

B) $y=2x^3+x$.

Возьмем произвольные x_1 и x_2 . Пусть $x_1 < x_2$.

Тогда $x_1^3 < x_2^3 \Leftrightarrow 2x_1^3 < 2x_2^3$. Сложим последнее неравенство с неравенством $x_1 < x_2$. $2x_1^3 + x_1 < 2x_2^3 + x_2$. $f(x_1) < f(x_2)$. Функция возрастает. $(x_1) = x_1 + x_2 + x_3 + x_4 = x_1 + x_2 + x_3 = x_1 + x_2 = x_2 + x_3 = x$

Возьмем произвольные неотрицательные x_1 и x_2 . Пусть $x_1 < x_2$.

Тогда $x_1^4 < x_2^4 \Leftrightarrow 2x_1^4 < 2x_2^4$. Сложим последнее неравенство с неравенством $x_1 < x_2$. $2x_1^4 + x_1 < 2x_2^4 + x_2$. $f(x_1) < f(x_2)$. Функция возрастает.

a)
$$y = \frac{x-5}{x+3} = \frac{x+3}{x+3} - \frac{8}{x+3} = 1 - \frac{8}{x+3}$$
, $x > -3$.

Для произвольных x_1 и x_2 , $x_1 < x_2$, из промежутка (-3; + ∞) имеем: $x_1 < x_2$

$$0 < x_1 + 3 < x_2 + 3$$

$$-\frac{8}{x_1+3}\!<\!-\frac{8}{x_2+3}\!\Leftrightarrow\!1\!-\!\frac{8}{x_1+3}\!<\!1\!-\!\frac{8}{x_2+3}\;.$$

 $f(x_1) < f(x_2)$. Функция возрастает

6)
$$y = \frac{2-x}{1-x} = \frac{1-x}{1-x} + \frac{1}{1-x} = 1 - \frac{1}{1-x}$$
; $x < 1$.

Для произвольных x_1 и x_2 , $x_1 < x_2$, из промежутка ($-\infty$; 1) имеем:

$$1-x_1>1-x_2>0$$

$$\frac{1}{1-x_1} < \frac{1}{1-x_2} ; 1 - \frac{1}{1-x_1} < 1 - \frac{1}{1-x_2} .$$

 $f(x_1) < f(x_2)$. Функция возрастает.

B)
$$y = \frac{x+1}{x-1} = \frac{x-1}{x-1} + \frac{2}{x-1} = 1 + \frac{2}{x-1}$$
; $x > 1$.

Для произвольных x_1 и x_2 , $x_1 < x_2$, из промежутка (1; $+\infty$) имеем:

$$0 < x_1 - 1 < x_2 - 1$$

$$\frac{2}{x_1-1} > \frac{2}{x_2-1} \; ; \; 1 - \frac{2}{x_1-1} < 1 - \frac{2}{x_2-1} \; .$$

 $f(x_1) > f(x_2)$. Функция убывает.

Задание некорректно.

$$\Gamma$$
) $y = \frac{6-x}{2-x} = \frac{2-x}{2-x} + \frac{4}{2-x}$, $x < 2$.

Для произвольных x_1 и x_2 , $x_1 < x_2$, из промежутка ($-\infty$; 2) имеем:

$$2-x_1>2-x_2>0$$

$$\frac{4}{2-x_1} < \frac{4}{2-x_2}$$
; $1 + \frac{4}{2-x_1} < 1 + \frac{4}{2-x_2}$.

 $f(x_1) < f(x_2)$. Функция возрастает.

269.

a)
$$y = -x^3 - 2x$$
.

Для произвольных x_1 и x_2 , $x_1 < x_2$ имеем: 1. $x_1^3 < x_2^3 \Leftrightarrow -x_1^3 < -x_2^3$

1.
$$x_1^3 < x_2^3 \Leftrightarrow -x_1^3 < -x_2^3$$

$$2. -2x_1 > -2x_2$$

Складывая неравенства, получаем $-x_1^3 - 2x_1 > -x_2^3 - 2x_2$;

 $f(x_1) > f(x_2)$. Функция убывает.

6)
$$y=x^6-0.5x, x \le 0$$
.

Для произвольных неположительных x_1 и x_2 , $x_1 < x_2$ имеем:

$$x_1^6 > x_2^6$$
; $-0.5x_1 > -0.5x_2$

Складывая эти неравенства, получаем

$$x_1^6$$
-0,5 x_1 > x_2^6 -0,5 x_2 . $f(x_1)$ > $f(x_2)$. Функция убывает.

B)
$$y=x^4-5x, x \le 0$$
.

Для произвольных неположительных x_1 и $x_2, x_1 \le x_2$ имеем: $x_1^4 \ge x_2^4$;

$$x_1^4 > x_2^4$$
;

 $-5x_1 > -5x_2$

Сложим эти неравенства.

$$x_1^4 - 5x_1 > x_2^4 - 5x_2$$
; $f(x_1) > f(x_2)$. Функция убывает.

$$r$$
) $v = -3x^5 - x$

Для произвольных x_1 и x_2 , $x_1 < x_2$ имеем: $-3x_1^5 > -3x_2^5$; $-x_1 > -x_2$

Сложим эти неравенства.
$$-3x_1^5 - x_1 > -3x_2^5 - x_2$$
; $f(x_1) > f(x_2)$. Функция убывает.

a)
$$y = \frac{x-5}{4-x} = -(\frac{5-x}{4-x}) = -(\frac{4-x}{4-x} + \frac{1}{4-x}) = -1 - \frac{1}{4-x} = -1 + \frac{1}{x-4}, x > 4.$$

Для произвольных x_1 и x_2 , $x_1 < x_2$ из промежутка (4; $+\infty$) имеем:

$$0 < x_1 - 4 < x_2 - 4$$

$$\frac{1}{x_1-4} > \frac{1}{x_2-4}$$
; $-1+\frac{1}{x_1-4} > -1+\frac{1}{x_2-4}$. $f(x_1) > f(x_2)$. Функция убывает.

6)
$$y = \frac{2-3x}{2+x} = -(\frac{3x-2}{2+x}) = -(\frac{3x+6}{x+2} + \frac{8}{x+2}) = -2 + \frac{8}{x+2}, x < -2.$$

Для произвольных x_1 и x_2 , $x_1 < x_2$ из промежутка ($-\infty$;-2) имеем:

$$\frac{8}{x_1+2} > \frac{8}{x_2+2}$$
; $-2 + \frac{8}{x_1+2} > -2 + \frac{8}{x_2+2}$.

 $f(x_1)>f(x_2)$. Функция убывает

B)
$$y = \frac{x+3}{1-x} = -(\frac{-3-x}{1-x}) = -(\frac{1-x}{1-x} + \frac{-4}{1-x}) = -1 + \frac{4}{1-x}, x > 1.$$

Для произвольных x_1 и x_2 , $x_1 < x_2$ из промежутка (1; $+\infty$) имеем:

$$1 - x_1 > 1 - x_2$$

$$\frac{4}{1-x_1} < \frac{4}{1-x_2} \; ; \; -1 + \frac{4}{1-x_1} < -1 + \frac{4}{1-x_2} \; ;$$

 $f(x_1) < f(x_2)$ — функция возрастает задача некорректна.

Функция убывает.

$$\Gamma$$
) $y = \frac{6-3x}{3+x} = -(\frac{3x-6}{3+x}) = -(\frac{3x+9}{x+3} - \frac{15}{x+3}) = -3 + \frac{15}{x+3}$, $x < -3$.

Для произвольных x_1 и x_2 , $x_1 < x_2$ из промежутка ($-\infty$; -3) имеем: $x_1 + 3 < x_2 + 3 < 0$;

$$\frac{15}{x_1+3} > \frac{15}{x_2+3}$$
; $-3 + \frac{15}{x_1+3} > -3 + \frac{15}{x_2+3}$.

 $f(x_1) > f(x_2)$. Функция убывает.

271.

а) $y=x^2+4x-3$. Пусть (x_0, y_0) – вершина параболы.

$$x_0 = -\frac{4}{2} = -2$$
. $y_{\text{min}} = y_0 = 4 - 8 - 3 = -7$. Наибольшего не существует.

б)
$$y = -4x^2 - 12x + 1$$
.

Пусть (x_0, y_0) – вершина параболы.

$$x_0 = -\frac{-12}{-8} = -\frac{3}{2}$$
. $y_{\text{max}} = y_0 = -4 \cdot \frac{9}{4} + 12 \cdot \frac{3}{2} + 1 = 10$.

Наименьшего не существует.

B)
$$y=9x^2+6x-5$$
.

Пусть (x_0, y_0) – вершина параболы.

$$x_0 = -\frac{6}{18} = -\frac{1}{3}$$
. $y_{\text{min}} = y_0 = 9 \cdot \frac{1}{9} - 6 \cdot \frac{1}{3} - 5 = -6$.

Наибольшего не существует.

$$\Gamma$$
) $y=-x^2+8x-12$.

Пусть (x_0, y_0) – вершина параболы.

$$x_0 = -\frac{-8}{-2} = 4$$
. $y_{\text{max}} = y_0 = -16 + 32 - 12 = 4$. y_{min} не существует.

272.

a)
$$y=|x|+3, x \in [-5; 1]$$
.

y будет наименьшим (наибольшим) при |x| наименьшем (наибольшем)

$$|x|_{\text{наим}}=0$$
; $|x|_{\text{наиб}}=5$; $y_{\text{наим}}=3$; $y_{\text{наиб}}=8$.

б)
$$y=-|4x|+1, x \in (-6; 2].$$

y будет наибольшим (наименьшим) при |4x| наименьшем (наибольшем).

 $|4x|_{\text{наиб}}$ – не существует; $|4x|_{\text{наим}} = 0$

 $y_{\text{наим}}$ – не существует; $y_{\text{наиб}} = 1$.

B)
$$y=-|2x|-1$$
, $x \in [-1; 1]$.

v будет наибольшим при |2x| наименьшем $|2x|_{\text{наим}} = 0$, $y_{\text{наим}} = -3$.

$$\Gamma$$
) $y=|x|+3, x \in [-5; 1).$

y будет наибольшим (наименьшим) при |x| наибольшем (наименьшем)

$$|x|_{\text{Hau}6}=5$$
, $y_{\text{Hau}6}=8$, $|x|_{\text{Hau}M}=0$, $y_{\text{Hau}M}=3$.

$$f(x) = \begin{cases} 2, \text{если} - 3 \le x \le 1\\ \sqrt{x}, \text{если} \ 1 < x \le 4\\ (x - 5)^2 + 1, \text{если} \ 4 < x \le 6 \end{cases}$$

1) D(f) = [-3; 6]

2) На [-3; -1] постоянна.

На [3; 4] и на [5; 6] возрастает.

На [4; 5] убывает.

3) Ограничена.

4)
$$y_{\text{наиб}}=2$$
, $y_{\text{наим}}=1$.

5) Непрерывна на [-3; 1).

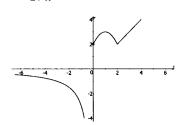
Непрерывна на (1; 6].

6) E(f)=[1; 2].

7) На [1; 4] выпукла вверх. На [4; 6] выпукла вниз.

На [-3; 1] можно считать выпуклой как вверх так и вниз.

274.



$$f(x) = \begin{cases} \frac{3}{x}, \text{ если } x < 0\\ -x^2 + 2x + 2, \text{ если } 0 \le x \le 2\\ x, \text{ если } 2 < x \le 4 \end{cases}$$

1) $D(f) = [-\infty; 4]$

2) На [-∞; 0] и на [1; 2] убывает.

На [0; 1] и на [2; 4] возрастает.

3) Ограничена сверху, неограничена снизу.

4) $y_{\text{наиб}}$ =4; $y_{\text{наим}}$ – не существует.

5) Непрерывна на (-∞; 0). Непрерывна на (0; 4].

6) $E(f)=(-\infty; 0)\cup[2; 4]$.

7) На [-∞; 0] и на [0; 2] выпукла вверх.

На [2; 4] выпукла как вверх, так и вниз.

§ 12. Четные и нечетные функции

275.

- а) Да, симметрично.
- б) Да, симметрично.
- в) Нет, не симметрично.
- г) Нет, не симметрично.

276.

- а) Нет, не симметрично.
- б) Нет, не симметрично.

в) Нет, не симметрично.

г) Нет, не симметрично.

а) $f(x)=3x^2+x^4$. $D(f)=(-\infty; +\infty)$ – симметрично.

 $f(-x)=3(-x)^2+(-x)^4=3x^2+x^4=f(x)$. Функция четная.

б) $f(x)=4x^6-x^2$. $D(f)=(-\infty; +\infty)$ – симметрично.

 $f(-x)=4(-x)^6-(-x)^2=4x^6-x^2=f(x)$. Функция четная.

в) $f(x)=2x^8-x^6$. $D(f)=(-\infty; +\infty)$ – симметрично.

 $f(-x)=2(-x)^8-(-x)^6=2x^8-x^6=f(x)$. Функция четная.

г) $f(x)=5x^2+x^{10}$. $D(f)=(-\infty;+\infty)$ — симметрично. $f(-x)=5(-x)^2+(-x)^{10}=5x^2+x^{10}=f(x)$. Функция четная.

a) $f(x)=x^2(2x^2-x^3)$. D(f)= $(-\infty; +\infty)$ – симметрично.

$$f(-x) = (-x)^2 (2(-x)^2 - (-x)^3) = x^2 (2x^2 + x^3).$$

В точке x=1 f(x)=1(2-1)=1; f(-x)=1(2+1)=3; $f(x)\neq f(-x)$, $f(-x)\neq -f(x)$.

Функция ни четная, ни нечетная. Задание не корректно.

б)
$$f(x) = \frac{x^4 + 1}{2x^3}$$
; $D(f) = (-\infty; 0) \cup (0; +\infty)$ – симметрично.

$$f(-x) = \frac{(-x)^4 + 1}{2(-x)^3} = -\frac{x^4 + 1}{2x^3} = -f(x)$$
. Функция нечетная.

в)
$$f(x)=x(5-x^2)$$
; $D(f)=(-\infty; +\infty)$ – симметрично

в)
$$f(x)=x(5-x^2)$$
; $D(f)=(-\infty; +\infty)$ – симметрично. $f(-x)=-x(5-(-x)^2)=-x(5-x^2)=-f(x)$. Функция нечетная.

г)
$$f(x) = \frac{3x}{x^6 + 2}$$
; $D(f) = (-\infty; +\infty) - \text{симметрично}.$

$$f(-x) = \frac{3(-x)}{(-x)^6 + 2} = -\frac{3}{x^6 + 2} = -f(x)$$
. Функция нечетная.

 $f(x)=x^2+x$; D(f)=($-\infty$; $+\infty$) – симметрично.

$$f(-x)=(-x^2)-x=x^2-x$$
, при $x=1$: $f(1)=2$, $f(-1)=0$

 $f(-x)\neq f(x)$? $f(-x)\neq -f(x)$. Функция ни четная, ни нечетная.

a) $f(x)=y=x^2$; $D(f)=(-\infty; +\infty)$ – симметрично.

 $f(-x)=(-x)^2=x^2=f(x)$. Функция четная.

б) $f(x)=y=x^7$; $D(f)=(-\infty; +\infty)$ – симметрично.

 $f(-x) = (-x)^7 = -x^7 = f(x)$. Функция нечетная.

в) $f(x)=y=x^6$; $D(f)=(-\infty; +\infty)$ – симметрично.

 $f(-x) = (-x)^6 = x^6 = f(x)$. Функция четная.

г) $f(x)=y=x^3$; $D(f)=(-\infty; +\infty)$ – симметрично.

 $f(-x) = (-x)^3 = -x^3 = f(x)$. Функция нечетная.

281.

а) $f(x)=y=|x|, x\in[-1;1]; D(f)=[-1;1]-$ симметрично.

f(-x)=|-x|=|x|=f(x). Функция четная.

б) $f(x)=y=x^5$, $x \in [-3; 3)$; D(f)=[-3; 3) – не симметрично.

Функция ни четная, ни нечетная.

в) $f(x)=y=|x|, x\in[-2; 2); D(f)=(-2; 2)$ – не симметрично.

Функция ни четная, ни нечетная.

г) $f(x)=x^5$, $x \in [-4; 4]$; D(f)=[-4; 4] – симметрично.

 $f(-x) = (-x)^5 = -x^5 = -f(x)$. Функция нечетная.

а) $f(x)=y=2x^3, x\in[-2;2]; D(f)=[-2;2]$ – симметрично. $f(-x)=2(-x)^3=-2x^3=-f(x)$. Функция нечетная.

$$f(-x)=2(-x)^3=-2x^3=-f(x)$$
. Функция нечетная.

б) $f(x)=y=-x^2$, $x \in [-1; 0]$; D(f)=[-1; 0] – не симметрично.

Функция ни четная, ни нечетная.

в) $f(x) = -x^2$, $x \in (-\infty; +\infty)$; $D(f) = (-\infty; \infty)$ – симметрично.

 $f(-x)=-(-x)^2=-x^2=-f(x)$. Функция четная.

г) $f(x)=y=2x^3$, $x \in [-3; 3)$; D(f)=[-3; 3) – не симметрично.

Функция ни четная, ни нечетная.

283.

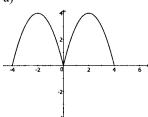
- а) Четная.
- б) Нечетная.
- в) Нечетная.
- г) Четная.

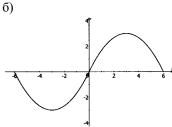
284.

- а) Нечетная.
- б) Ни четная, ни нечетная.
- в) Четная.
- г) Ни четная, ни нечетная.

285.

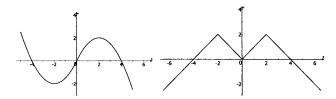
a)





в)

г)



286

а) График f(x) симметричен относительно оси ординат. Значит направления монотонности при $x{>}0$ и $x{<}0$ противоположны.

То есть при x < 0 функция убывает.

- б) Из тех же соображений, что и в п. а) функция возрастает при x<0.
- в) Возьмем произвольные x_1 и x_2 , $x_1 < x_2 < 0$, и рассмотрим $f(x_1)$ и $f(x_2)$ $f(x_1) = -f(-x_1)$; $f(x_2) = -f(-x_2)$.

Но 0<− x_2 <− x_1 , а функция возрастает при x > 0.

Значит, $f(-x_1) > f(-x_2) \Leftrightarrow -f(-x_1) < -f(-x_2) \Leftrightarrow f(x_1) < f(x_2)$.

Функция возрастает при x < 0.

г) Возьмем произвольные x_1 и x_2 , $x_1 < x_2 < 0$.

Так как функция нечетная, то $f(-x_1) = -f(x_1)$; $f(-x_2) = -f(x_2)$.

Так как $0 < -x_2 < -x_1$, и функция убывает при x > 0, то $f(-x_1) > f(-x_2)$;

 $-f(x_1) \le -f(-x_2)$. $f(x_1) \ge f(x_2)$. Функция убывает при $x \le 0$.

287.

а) Можно. б) Нельзя.

288.

а) Можно. б) Нельзя. Ответ в задачнике неверен.

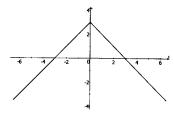
289.

а) Нельзя. Ответ в задачнике неверен. б) Можно.

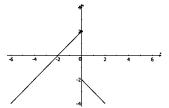
290.

а) Нельзя. б) Можно.

291.

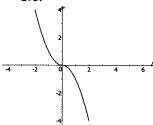


Четная.



Ни четная, ни нечетная.

293.



Нечетная.

294.

а)
$$f(x)=y=\sqrt{x+1}$$
; $D(f)=[-1;+\infty)$ – не симметрично.

Ни четная, ни нечетная.

б)
$$f(x)=y=\frac{x-2}{x^2-1}$$
; $D(f)=[-\infty;-1)\cup(-1;1)\cup(1;+\infty)$ – симметрично.

$$f(-x) = \frac{-x-2}{(-x)^2-1} = \frac{-x-2}{x^2-1}$$
.

При
$$x=2$$
, $f(-x)=-4$, $f(x)=0$. $f(-x)\neq f(x)$, $f(-x)\neq -f(x)$.

Ни четная, ни нечетная.

в)
$$f(x)=y=\sqrt{x-5}$$
; $D(f)=[5; +\infty)$ – не симметрично.

Ни четная, ни нечетная.

г) f(x)=y=
$$\frac{x+2}{x^2-16}$$
; D(f)=[- ∞ ; -4) \cup (-4; 4) \cup (4; + ∞) – симметрично.

Возьмем
$$x=2$$
. $f(2)=\frac{4}{-8}=-\frac{1}{2}$.

$$f(-2)=0$$
, $f(2)\neq f(-2)$, $f(-2)\neq -f(2)$. Функция ни четная, ни нечетная.

а)
$$f(x)=4x-2x^3+6x^5$$
. $D(f)=(-\infty; +\infty)$ – симметрично.

$$f(-x)=4(-x)-2(-x)^3+6(-x)^5=-(4x-2x^3+6x^5)=-f(x)$$
. Функция нечетная.

б)
$$f(x)=y=\frac{x-2}{x^2+4}$$
; $D(f)=(-\infty; +\infty)$ – симметрично.

Возьмем
$$x=2$$
. $f(2)=0$; $f(-2)=-\frac{4}{8}=-\frac{1}{2}$.

f(-2)≠f(2), f(-2)≠- f(2). Функция ни четная, ни нечетная.

в) $f(x) = \sqrt{x}$; $D(f) = [0; +\infty)$ – не симметрично.

Функция ни четная, ни нечетная.

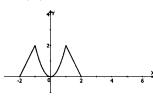
г)
$$f(x)=y=\frac{x^2+8}{x^2-9}$$
; $D(f)=(-\infty;-3)\cup(-3;3)\cup(3;+\infty)$ – симметрично.

$$f(-x) = \frac{(-x)^2 + 8}{(-x)^2 - 9} = \frac{x^2 + 8}{x^2 - 9} = f(x)$$
. Функция четная.

206

$$f(x)=4x^4-x^3+2x^2-x+5$$
. $f(x)=f_1(x)+f_2(x)$, где $f_1(x)=4x^4+2x^2+5$ – четная, $f_2(x)=-x^3-x$ – нечетная.

297.



$$\mathbf{f(x)} = \begin{cases} 2x + 4, \text{если} - 2 \le x \le -1 \\ 2x^2, \text{если} - 1 < x \le 1 \\ -2x + 4, \text{если} \ 1 < x \le 2 \end{cases}$$

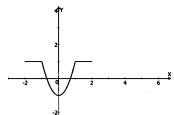
- 1) D(f)=[-2; 2].
- 2) Четная.
- 3) Возрастает на [-2; -1] и на [0; 1].

Убывает на [-1; 0] и на [1; 2].

- 4) Ограничена. 5) $y_{\text{наим}}$ =0; $y_{\text{наиб}}$ =2.
- 6) Непрерывна. 7) E(f)=[0; 2].
- 8) На [-1; 1] выпукла вниз. На [-2; 1] и на [1; 2] функцию можно считать выпуклой как вверх, так и вниз.

298.

$$f(x) \begin{cases} 1, \text{если} - 2 \le x \le -1 \\ 2x^2 - 1, \text{если} - 1 < x \le 1 \\ 1, \text{если} 1 < x \le 2 \end{cases}$$



- 1) D(f)=[-2; 2].
- 2) Четная.
- 3) Возрастает на [0; 1]. Убывает на [-1; 0].

Постоянна на [-2, -1] и на [1; 2]

4) Ограничена.

- 5) $y_{\text{наим}} = -1$; $y_{\text{наиб}} = 1$.
- 6) Непрерывна.
- 7) E(f)=[-1; 1].
- 8) На [-1; 1] выпукла вниз. На [-2; -1] и на [1; 2] функцию можно считать выпуклой как вверх, так и вниз.

- 1) D(f)= $(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Убывает на [-1; 1].

На $(-\infty; -1]$ и на $(1; +\infty)$ функция постоянна.

- 4) Ограничена.
- 5) $y_{\text{наим}} = -3$; $y_{\text{наиб}} = 2$.
- 6) Непрерывна на $(-\infty; -1)$, на (-1; 1) и на $(1; +\infty)$.
- 7) $E(f)=[-3; 1] \cup \{2\}.$
- 8) На (-1; 0) выпукла вниз. На $(-\infty; -1]$ и на $[1; +\infty)$ функцию можно считать выпуклой как вверх, так и вниз.

300.

а) Четная.

$$h(-x)=f(-x) g^2(-x)=f(x) (-g(x))^2=f(x) g^2(x)=h(x);$$

б)
$$h(-x)=f(-x)-g(-x)=f(x)-g(x)=h(x)$$
, четная;

в)
$$h(-x)=f(-x)+g(-x)=-f(x)-g(x)=-h(x)$$
, нечетная;

$$\Gamma$$
) $h(-x)=f(-x)\cdot g(-x)=-f(x)\cdot (-g(x))=f(x)g(x)=h(x)$, четная.

301.

$$h(x)=3+x^2$$
.

302.

 $h(x) = -4 - 3x^2$. Ответ в задачнике неверен.

303.

a)
$$h(x)=3-2x^2$$
.

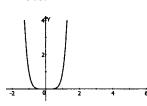
б)
$$h(x) = -3 + 2x^2$$
.

304.

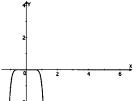
- a) $h(x)=1+x^2$;
- б) не существует, т.к. f(0) должно быть равным 0 (в данном случае).

§ 13. Функции $y = x^n$ (n \in N), их свойства и графики

305.

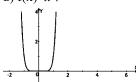


- a) $f(x)=y=x^6$.
- 1) $D(f)=(-\infty; +\infty)$.
- 2) Четная.
- 3) Возрастает на (0; +∞).
- Убывает на (-∞; 0).
- 4) Ограничена снизу, не ограничена сверху.
- 5) $y_{\text{наим}}$ =0, $y_{\text{наиб}}$ не существует. 6) Функция непрерывна.
- 7) $E(f)=[0; +\infty)$. 8) Выпукла вниз.



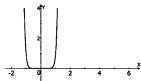
- б) $f(x) = -x^{10}$.
- 1) $D(f)=(-\infty; +\infty)$.
- 2) Четная.
- 3) Возрастает на (-∞; 0).
- Убывает на (0; +∞).
- 4) Ограничена сверху, не ограничена снизу.
- 5) $y_{\text{наиб}} = 0$, $y_{\text{наим}}$ не существует.
- 6) Функция непрерывна.
- 7) $E(f)=(-\infty; 0]$. 8) Выпукла вверх.

B) $f(x) = x^8$.



Свойства в точности такие же, что и в пункте а).

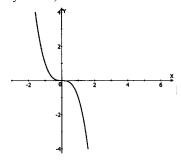
 Γ) $y=x^{12}$.



Свойства в точности такие же, что и в пункте а).

306.

- a) $f(x)=y=-x^3$
- 1) D(f)= $(-\infty; +\infty)$.
- 2) Нечетная.

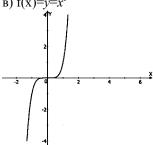


- 3) Убывает.
- 4) Не ограничена ни сверху, ни снизу.
- 5) $y_{\text{наиб}}$, $y_{\text{наим}}$ не существует.
- 6) Непрерывна.
- 7) $E(f)=(-\infty; +\infty)$.
- 8) Выпукла вниз на $(-\infty; 0]$.

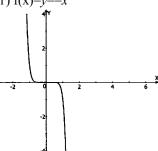
Выпукла вверх на $[0; +\infty)$.

- б) $f(x)=y=x^7$
- 1) $D(f)=(-\infty; +\infty)$.
- 2) Нечетная.
- 3) Возрастает.
- 4) Не ограничена ни сверху, ни снизу.
- 5) $y_{\text{наиб}}$, $y_{\text{наим}}$ не существует.
- 6) Непрерывна.
- 7) $E(f)=(-\infty; +\infty)$.
- 8) Выпукла вниз на $(-\infty; 0]$.

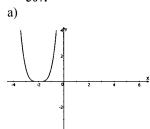
Выпукла вверх на $[0; +\infty)$.



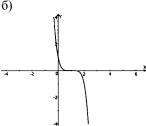
Свойства в точности те же. что и в предыдущем пункте.



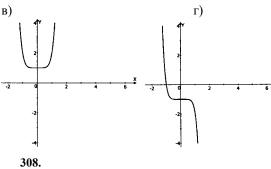
Свойства в точности те же. что и в пункте а.

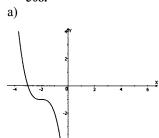


б)

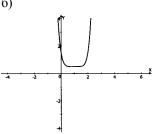


в)

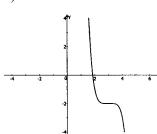


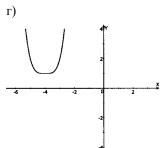


б)



в)





а)
$$y_{\text{наим}} = 0$$
, $y_{\text{наиб}} = 1$;

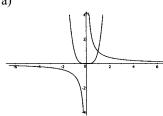
б)
$$y_{\text{наим}} = \frac{1}{64}$$
, $y_{\text{наиб}}$ – не существует;

в)
$$y_{\text{наим}} = 0$$
, $y_{\text{наиб}} = 64$;

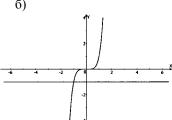
г)
$$y_{\text{наим}}$$
=729, $y_{\text{наиб}}$ – не существует.

- а) $y_{\text{наим}} = -1$, $y_{\text{наиб}} = 1$; б) $y_{\text{наиб}} = 0$, $y_{\text{наим}}$ не существует;
- в) $y_{\text{наим}}$ не существует, $y_{\text{наиб}}$ =243; г) $y_{\text{наим}}$ =-1, $y_{\text{наиб}}$ не существует.

a)



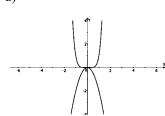
б)

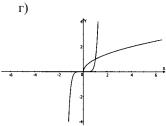


Точка пересечения (1; 1);

Точка пересечения (-1; -1);

в)

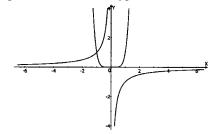




Точка пересечения (0; 0).

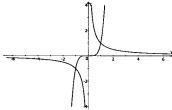
Точка пересечения (0; 0) и (1; 1).

а) Построим графики обеих частей уравнения.

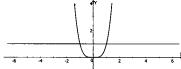


Точка пересечения (-1; 1). x=-1;

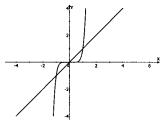
б)



Точки пересечения (1; 1) и (-1; -1), x=1, x=-1;



Точки пересечения (1; 1), (-1; -1), x=1, x=-1;

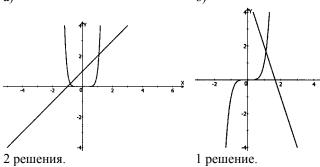


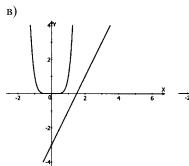
x=1, *x*=-1, *x*=0.

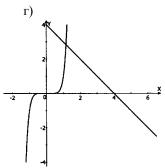
313.

Будем определять количество решений по графикам.

a)





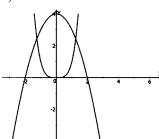


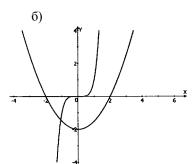
Нет решений.

1 решение.

314.

a)

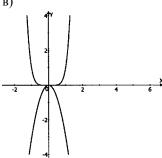


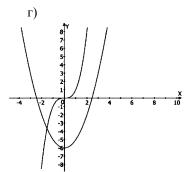


2 решения.

1 решение.

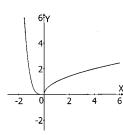
в)





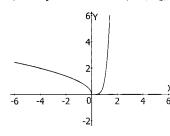
1 решение.

1 решение.



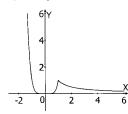
a)
$$f(x) = \begin{cases} x^4, если x < 0 \\ \sqrt{x}, если x \ge 0 \end{cases}$$

- 1) $D(f)=(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Убывает на (-∞; 0].
- Возрастает на $[0; +\infty)$.
- 4) Не ограничена сверху, ограничена снизу.
- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна.
- 7) $E(f)=[0; +\infty)$.
- 8) Выпукла: вниз на $(-\infty; 0]$, вверх на $[0; +\infty)$.



б)
$$f(x) =\begin{cases} -\sqrt{x}, \text{ если } x < 0 \\ x^5, \text{ если } x \ge 0 \end{cases}$$

- 1) $D(f)=[0; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает.
- 4) Не ограничена сверху, ограничена снизу.
- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна на области определения.
- 7) $E(f)=[0; +\infty)$.
- 8) Выпукла вниз.



в)
$$f(x) = \begin{cases} x^6, \text{ если } x \le 1\\ \frac{1}{x}, \text{ если } x > 1 \end{cases}$$

- 1) $D(f)=(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на [0; 1].

Убывает на [-∞; 0] и на [1; +∞).

- 4) Не ограничена сверху, ограничена снизу.
- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна.
- 7) $E(f)=[0; +\infty)$.

8) Выпукла вниз на
$$(-\infty; 1]$$
 и на $[0; +\infty)$.
г) $f(x) = \begin{cases} x^7, \text{ если } x \le -1 \\ -2 - x, \text{ если } -1 \le x \le 2 \end{cases}$

1) $D(f)=(-\infty; 2]$.

- 2) Ни четная, ни нечетная.
- 3) Возрастает на $(-\infty; -1]$. Убывает на [-1; 2].
- 4) Не ограничена снизу, ограничена сверху.
- 5) $y_{\text{наиб}} = -1$,
- 6) Непрерывна на области определения.
- 7) $E(f)=(-\infty; -1]$.
- 8) Выпукла вверх на $(-\infty; -1]$. На [-1; 2] можно считать выпуклой как вверх, так и вниз.

Если точка принадлежит графику, то ее координаты удовлетворяют уравнению $y=x^2$.

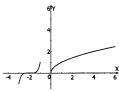
317.

Если график проходит через заданную точку, то ее координаты удовлетворяют уравнению $y=x^n$.

б)

- а) $1=(-1)^n$, n- четное. Функция четная.
- б) $-1=(-1)^n$, n нечетное. Функция нечетная.
- в) $1=1^n$, n –любое. Функция либо четная, либо нечетная.
- Γ) $-1=1^{n}$, чего быть не может. Задание некорректно.

318.

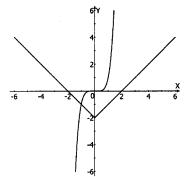


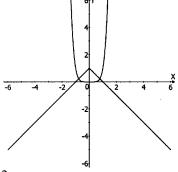
p>Q.

319.

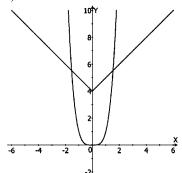
k=L.

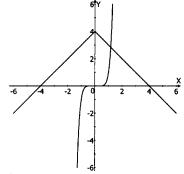
320. a)





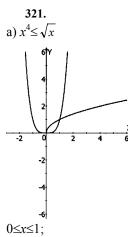
1 решение. в)

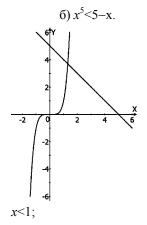




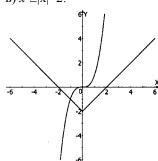
2 решения.

1 решение.

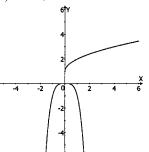




в) $x^3 \ge |x| - 2$.



$$\Gamma$$
) $-x^4 < \sqrt{x} + 1$.



x≥–1.

322.

$$f(x) = \begin{cases} |x|, если & x \le 0 \\ x^7, если & 0 < x \le 1 \\ \frac{1}{x}, если & x > 1 \end{cases}$$

- 1) $D(f)=(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на [0; 1].

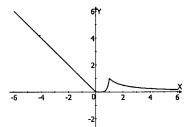
Убывает на $(-\infty; 0]$ и на $[1; +\infty)$.

- 4) Не ограничена сверху, ограничена снизу.
- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна.
- 7) $E(f)=[0; +\infty)$.
- 8) Выпукла вниз на [0;1] и на $[1;+\infty)$. На $(-\infty;0]$ выпукла как вверх, так и вниз.

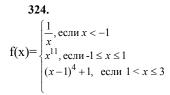
323.

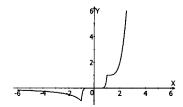
$$f(x) = \begin{cases} 1, \text{ если -} 3 \le x \le -1 \\ x^6, \text{ если -} 1 < x \le 1 \\ x, \text{ если } x > 1 \end{cases}$$

- 1) $D(f)=[-3; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на $[0; +\infty)$. Убывает на [-1; 0]. Постоянна на [-3; -1]
- 4) Не ограничена сверху, ограничена снизу.
- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна на области определения.
- 7) $E(f)=[0; +\infty)$.



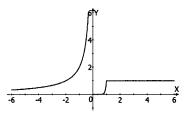
8) Выпукла вниз на [-1; 1]. На [-3; -1] и на $[1; +\infty)$ можно считать функцию выпуклой как вверх, так и вниз.





- 1) D(f)=(-∞; 3].
- 2) Ни четная, ни нечетная.
- 3) Возрастает на $[-1; +\infty)$. Убывает на $(-\infty; -1]$.
- 4) Ограничена снизу, ограничена сверху.
- 5) $y_{\text{наим}}$ =-1, $y_{\text{наиб}}$ =17. 6) Непрерывна на области определения.
- 7) E(f)=[-1; 17].
- 8) Выпукла вниз на [0;1] и на [1;3). Выпукла вверх на $[-\infty;-1]$ и на [-1;0].

325.



$$f(x) = \begin{cases} -\frac{2}{x}, если x < 0\\ x^{12}, если 0 \le x \le 1\\ 1, если x > 1 \end{cases}$$

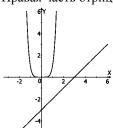
- 1) $D(f)=(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на $(-\infty; 0)$ и на [0; 1]. На $[1; +\infty)$ постоянна.
- 4) Ограничена снизу, неограничена сверху.
- 5) Непрерывна на $(-\infty; 0)$ и на $(0; +\infty)$.
- 6) $y_{\text{наим}}$ =0, $y_{\text{наиб}}$ не существует.
- 7) $E(f)=[0; +\infty)$.
- 8) Выпукла вниз на $(-\infty; 0]$ и на [0; 1].

На $[1; +\infty)$ можно считать функцию как выпуклой вверх, так и выпуклой вниз.

326.

a)
$$x^4+x^2+1=0$$
; $x^4=-x^2-1$.

Правая часть отрицательна, левая – неотрицательна. Корней нет.



6)
$$x^6-x+3=0$$
; $x^6=x-3$.

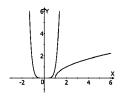
Точек пересечения нет. Корней нет.

B)
$$x^4+x^2-2x+3=0$$

$$x^4+1+(x-1)^2=0$$

$$x^4+1=-(x-1)^2$$
.

Правая часть не положительна, левая – положительна. Корней нет.



г)
$$x^6 - \sqrt{x-1} = 0$$

 $x^6 = \sqrt{x-1}$.
Точек пересечения нет. Корней нет.

327.

$$y=f(x), f(x)=x^7; f(2x)\cdot f(\frac{x}{2})=(2x)^7\cdot (\frac{x}{2})^7=x^{14}=(x^7)^2=(f(x))^2.$$

y=f(x), f(x)=-x⁴; f(4x)·f(-
$$\frac{x}{4}$$
)=-(4x)⁴· -($\frac{-x}{4}$)⁴=x⁸=(x⁴)²=(f(x))².

$$y=f(x), f(x)=x^{10}; f(x^2)\cdot f(x^{-1})=(x^2)^{10}\cdot (x^{-1})^{10}=x^{20}\cdot x^{-10}=x^{10}=f(x).$$

$$y=f(x), f(x)=-x^3;$$

$$(f(x))^9$$
: $f(-\frac{1}{2}x^4) = (-x^3)^9$: $-(-\frac{1}{2}x^4)^3 = -x^{27}$: $\frac{x^{12}}{8} = -8x^{15} = -(2x^5)^3 = f(2x^5)$.

§ 14. Функции $y = x^{-n}$, (n \in N), их свойства и графики

a)
$$f(x)=x^{-4}$$
, $A(\frac{1}{2}; 16)$, $B(-2; \frac{1}{8})$

$$16=(\frac{1}{2})^{-4}$$
 – верно. А принадлежит графику.

$$\frac{1}{8}$$
 = $(-2)^{-4}$ – неверно. В не принадлежит графику.

б)
$$f(x)=x^{-5}$$
. A (0; 0), B (-1; -1)

$$0=0^{-5}$$
 – неверно. А не принадлежит графику.

$$-1$$
= -1^{-5} – верно. Принадлежит графику.

B)
$$f(x)=x^{-6}$$
, A $(\sqrt{2};\frac{1}{8})$, B $(\frac{1}{2};64)$

 $\frac{1}{8}$ = $(\sqrt{2})^{-6}$ – верно. А принадлежит графику.

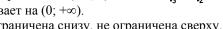
 $64=(\frac{1}{2})^{-6}$ – верно. В принадлежит графику.

г) $f(x)=x^{-7}$. A(-1; 1), B (1; -1); $1=-1^{-7}$ – неверно; $-1=1^{-7}$ – неверно. Ни А, ни В не принадлежат графику.

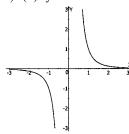
332.

- 1) $D(f)=(-\infty; 0)\cup(0; +\infty)$.
- 2) Четная.
- 3) Возрастает на (-∞; 0).

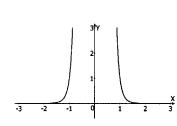
Убывает на (0; +∞).



- 4) Ограничена снизу, не ограничена сверху.
- 5) $y_{\text{наим}}$, $y_{\text{наиб}}$ не существуют.
- 6) Непрерывна на $(-\infty; 0)$ и на $(0; +\infty)$.
- 7) $E(f)=(0; +\infty)$.
- 8) Выпукла вниз на $(-\infty; 0)$ и на $(0; +\infty)$.
- б) $f(x)=y=x^{-3}$.



- 1) $D(f)=(-\infty; 0)\cup(0; +\infty)$.
- 2) Нечетная.
- 3) Убывает на $(-\infty; 0)$ и на $(0; +\infty)$.
- 4) Не ограничена ни снизу, ни сверху.
- 5) у_{наим}, у_{наиб} не существуют.
- 6) Непрерывна на $(-\infty; 0)$ и на $(0; +\infty)$.
- 7) $E(f) = (-\infty; 0) \cup (0; +\infty)$.
- 8) Выпукла вверх на $(-\infty; 0)$, вниз на (0; $+\infty$).

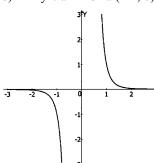


- B) $f(x)=y=x^{-8}$.
- 1) $D(f)=(-\infty; 0)\cup(0; +\infty)$.
- 2) Четная.
- 3) Возрастает на (-∞; 0).

Убывает на (0; +∞).

- 4) Ограничена снизу, не ограничена сверху.
- 5) $y_{\text{наим}}, y_{\text{наиб}}$ не существуют.
- 6) Непрерывна на $(-\infty; 0)$ и на $(0; +\infty)$.
- 7) $E(f)=(0; +\infty)$.

8) Выпукла вниз на $(-\infty; 0)$ и на $(0; +\infty)$.

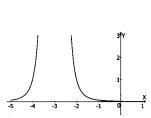


$$\Gamma$$
) f(x)=y= $\frac{1}{x^5}$.

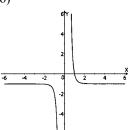
- 1) $D(f)=(-\infty; 0)\cup(0; +\infty)$.
- 2) Нечетная.
- 3) Убывает на $(-\infty; 0)$ и на $(0; +\infty)$.
- 4) Не ограничена ни снизу, ни сверху.
- 5) $y_{\text{наим}}$, $y_{\text{наиб}}$ не существуют.
- 6) Непрерывна на $(-\infty; 0)$ и на $(0; +\infty)$.
- 7) $E(f)=(-\infty; 0)\cup(0; +\infty)$.
- 8) Выпукла: вверх на $(-\infty; 0)$, вниз на

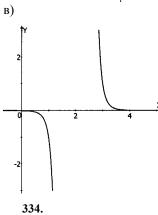
 $(0; +\infty)$.

333.

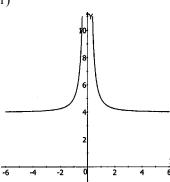


б)



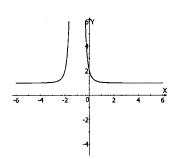


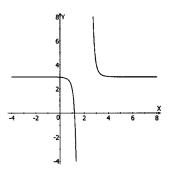
г)



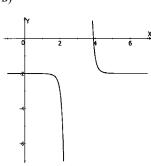
a)

б)

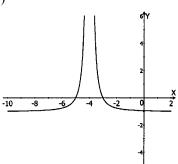




в)



г)



$$f(x)=y=x^{-4}$$
.

а)
$$y_{\text{наиб}} = f(\frac{1}{2}) = 16$$
 на $[-\frac{1}{2}; 1], y_{\text{наим}} = 1;$

б) на
$$(-\infty; -2]$$
 $y_{\text{наи6}} = \frac{1}{16}$, $y_{\text{наим}}$ – не существует;

в) на
$$(-3; -1]$$
 у_{наиб}=1, у_{наим} – не существует;

г) на [3; +
$$\infty$$
) у_{наиб}=f(3) = $\frac{1}{81}$, у_{наим} – не существует.

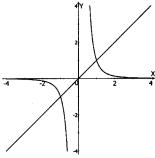
336.
$$f(x)=y=x^{-5}$$

а) на [-2; -1] у_{наиб}=
$$f(-2)$$
= $-\frac{1}{32}$, у_{наим}= $f(-1)$ =-1;

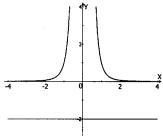
б) на
$$(-\infty; -\frac{1}{2}]$$
 у_{наиб}— не существует, у_{наим} =f $(-\frac{1}{2})$ =-32;

в) на
$$(\frac{1}{2}; 4]$$
 у_{наиб} –не существует, у_{наим} = $f(4)$ = $\frac{1}{1024};$

г) на [2; +∞) у_{наиб}=f(2)=
$$\frac{1}{32}$$
 , у_{наим} – не существует.

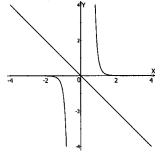


Точки пересечения (1; 1) и (-1; -1); б) $y=x^{-4}$ и y=-2



Точек пересечения нет;

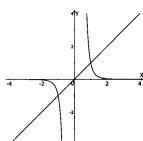
г) y=
$$\frac{1}{x^2}$$
 и y=|x|

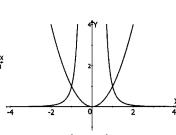


Точек пересечения нет;

Точки пересечения (1; 1) и (-1; 1);

6)
$$\frac{1}{x^4} = x^2$$

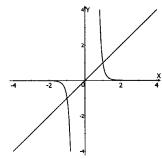


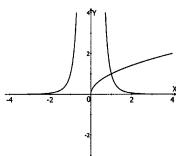


$$x=1, x=-1;$$

$$\mathbf{B}) \; \frac{1}{x^7} = \mathbf{X}$$

$$\Gamma) x^{-4} = \sqrt{x}$$

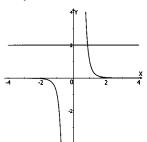


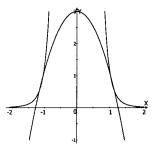


$$x=1$$
.

a)
$$\begin{cases} y = \frac{1}{x^5} \\ y = 2 \end{cases}$$

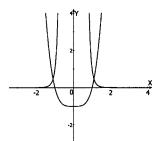
$$\begin{cases} y = x^{-6} \\ y = 3 - 2x^2 \end{cases}$$





1 решение;

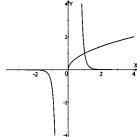
B)
$$\begin{cases} y = \frac{1}{x^8} \\ y = x^4 - 1 \end{cases}$$



2 решения;

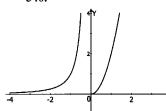
4 решения;

$$\Gamma) \begin{cases} y = x^{-7} \\ y = \sqrt{x} \end{cases}$$



1 решение.

340.



 $f(x) = \begin{cases} x^{-2}, \text{если } x < 0 \\ 2x^2, \text{если } x \ge 0 \end{cases}$

1) $D(f)=(-\infty; +\infty)$.

2) Ни четная, ни нечетная .

3) Возрастает на $(-\infty; 0)$ и на $[0; +\infty)$

4) Ограничена снизу, не ограничена

сверху.

5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ – не существует.

6) Непрерывна на $(-\infty; 0)$ и на $(0; +\infty)$.

7) $E(f)=[0; +\infty)$.

8) Выпукла вниз на $(-\infty; 0)$ и на $(0; +\infty)$.

341.

$$f(x) = \begin{cases} |x|, если x \le 1 \\ x^{-3}, если x > 1 \end{cases}$$

1) D(f)= $(-\infty; +\infty)$.

2) Ни четная, ни нечетная.

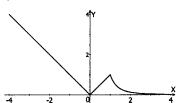
3) Возрастает на [0; 1].

Убывает на (-∞; 0) и на [1; +∞).

4) Ограничена снизу, не ограничена сверху.

5) $y_{\text{наим}}$ =0, $y_{\text{наиб}}$ – не существует.

6) Непрерывна на D(f).



7)
$$E(f)=[0; +\infty)$$
.

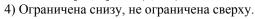
8) Выпукла вниз на [1; +∞).

На $(-\infty; 1]$ можно считать функцию выпуклой как вверх, так и вниз.

$$f(x) = \begin{cases} -2(x+1)^2 + 2, если - 2 \le x \le 0 \\ x^{-12}, если x > 0 \end{cases}$$

- 1) $D(f)=[-2; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на [-2; -1].

Убывает на [-1; 0] и на (0; +∞).



- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна на $(0; +\infty)$ и на [-2; 0).
- 7) $E(f)=[0; +\infty)$.
- 8) Выпукла: вверх на [-2; 0], вниз на $(0; +\infty)$.

 $v=x^{-n}$

a)
$$(2; \frac{1}{256}); \frac{1}{256} = 2^{-n}, n=8$$

a)
$$(2; \frac{1}{256}); \frac{1}{256} = 2^{-n}, n=8;$$
 6) $(-2; -\frac{1}{32}); -\frac{1}{32} = -2^{-n}, n=5;$

в) (7;
$$\frac{1}{343}$$
); $\frac{1}{343} = 7^{-n}$, n=3; г) ($\frac{1}{5}$; 625); 625= $\frac{1}{5}$ - $\frac{1}{5}$, n=4.

$$\Gamma$$
) $(\frac{1}{5}; 625); 625 = \frac{1}{5}^{-n}, n=4$

 $v=x^{-n}$

a)
$$(-1; 1);$$

 $1 = -1^{-n}$, n -четное. Функция четная.

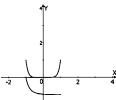
$$6(-1;-1);$$

 $-1=-1^{-n}$, n — нечетное. Функция нечетная.

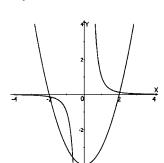
 $1=1^{-n}$, n –любое. Функция либо четная, либо нечетная.

$$\Gamma$$
) (1; -1);

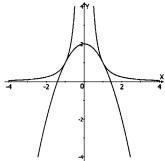
 $-1=1^{-n}$, таких n не существует. Задание некорректно.



a)
$$\begin{cases} y = x^{-3} \\ y = x^2 - 4 \end{cases}$$



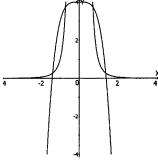
$$\begin{cases} y = \frac{1}{x^2} \\ y = 2 - x \end{cases}$$

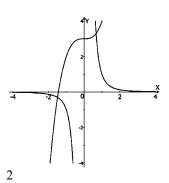


3 решения.

$$\begin{cases} y = x^{-4} \\ y = 4 - x^4 \end{cases}$$

$$\Gamma) \begin{cases} y = \frac{1}{x^3} \\ y = x^3 + 3 \end{cases}$$

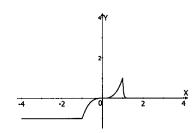




4 решения. решения.

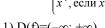
347.

a)
$$f(x) = \begin{cases} -1, ecли \ x \le -1 \\ x^3, ecли \ -1 < x \le 1 \\ \frac{1}{x^{28}}, ecли \ x > 1 \end{cases}$$



- 1) D(f)= $(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на [-1; 1].
- Убывает на [1;+∞).
- На (-∞; -1] постоянна.
- 4) Ограничена.
- 5) $y_{\text{наим}} = -1$, $y_{\text{наиб}} = 1$.
- 6) Непрерывна на D(f).
- 7) E(f)=[-1; 1].
- 8) Выпукла: вверх на [-1; 0], вниз на [0; 1] и на $[1; +\infty)$.

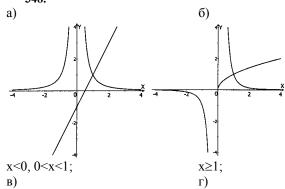
На $(-\infty; -1)$ можно считать выпуклой как вверх, так и вниз.

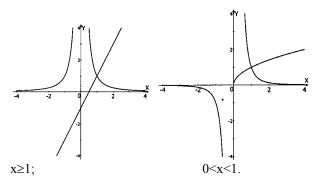


- 1) D(f)= $(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на [1; +∞) и на [1; 0].

Убывает на $(-\infty; -1]$ и на [0; 1].

- 4) Ограничена снизу, не ограничена сверху.
- 5) $y_{\text{наим}} = -1$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна на $(-\infty; 1)$ и на $(1; +\infty)$.
- 7) $E(f)=[-1; 0]\cup[1; +\infty)$.
- 8) Выпукла: вверх на $(-\infty; -1]$ и на [-1; 1], вниз на $(1; +\infty)$.





y=f(x), f(x)=x⁵; y=g(x), g(x)=x⁻¹⁰;

$$\frac{(f(2x))^2}{32} = \frac{((2x)^5)^2}{32} = 32 \cdot x^{10} = 32 \cdot (g(x))^{-1}.$$

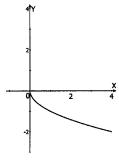
y=f(x), f(x)=x²; y=g(x), g(x)=x⁻⁴

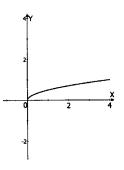
$$\frac{16}{f(x^2)} = \frac{16}{(x^2)^2} = \frac{16}{x^4} = (\frac{2}{x})^4 = \left((\frac{2}{x})^{-4}\right)^{-1} = (g(\frac{2}{x}))^{-1}$$

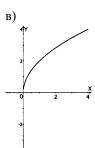
§ 15. Как построить график функции y = mf(x), если известен график функции y = f(x)

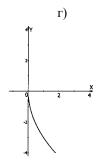
$$y=f(x), f(x)=\sqrt{x}$$

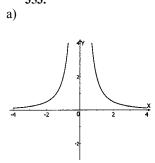
a) 6)

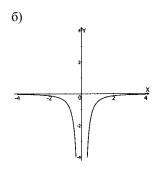






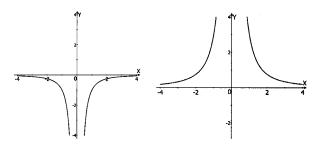






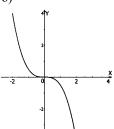
в)

г)

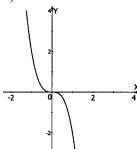


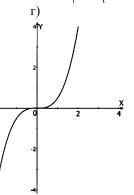


б)



в)

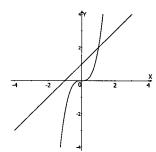


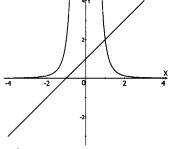


355.

a)

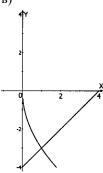
б)



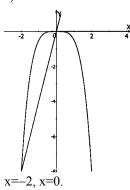


x=1.

в)



г)

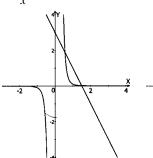


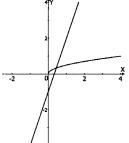
x=1;

Опечатка в ответе задачника

a)
$$\frac{356.}{0.1}$$
 = 3-2x.

б) $0.5\sqrt{x} = 3x - 1.$

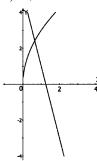




2 решения.

1 корень.

B)
$$3\sqrt{x} = 5-4x$$
.



1 корень.

3 корня.

$$y=3x^4$$

$$y=3x^4$$

а) на
$$[-\frac{1}{2}; 1]$$
 у_{наим}=0, у_{наиб}=3; б) на $[-1; 2)$ у_{наим}=0, у_{наиб} – не

существует;

в) на
$$[-1; -\frac{1}{2}]$$
 у_{наим} = $\frac{3}{16}$, у_{наиб} = 3; г) на $[-1; 2]$ у_{наим} = 0, у_{наиб} = 48.

358.

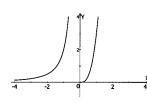
$$y=-2\sqrt{x}$$

- а) на отрезке [0; 4] у_{наим}=-4, у_{наиб}=0;
- б) на [0; 9] у_{наим} не существует, у_{наиб}=0;

в) на
$$[\frac{1}{4}; \frac{9}{4}]$$
 у_{наим}=-3, у_{наиб}=-1;

г) на (1; 1,96] у_{наим}=-2,8, у_{наиб} – не существует.

359.



$$f(x) = \begin{cases} 2x^{-2}, если x < 0 \\ 3x^3, если x \ge 0 \end{cases}$$

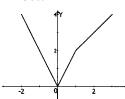
- 1) $D(f)=(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на $(-\infty; 0)$ и на $[0; +\infty)$. 4) Ограничена снизу, не ограничена

сверху.

- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна на $(-\infty; 0)$ и на $(0; +\infty)$.
- 7) $E(f)=[0; +\infty)$.

8) Выпукла вниз на $(-\infty; 0)$ и на $[0; +\infty)$.

360.



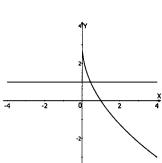
$$f(x) = \begin{cases} 2 \mid x \mid, если \ x \le 1 \\ x + 1, если \ x > 1 \end{cases}$$

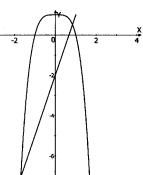
- 1) $D(f)=(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на $[0; +\infty)$. Убывает на $(-\infty; 0)$.

- 4) Ограничена снизу, не ограничена сверху.
- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна на D(f).
- 7) $E(f)=[0; +\infty)$.
- 8) Можно считать функцию как выпуклой вверх, так и выпуклой вниз на $(-\infty; +\infty)$.

a)
$$\begin{cases} y = -3\sqrt{x} + 3 \\ y = 1 \end{cases}$$

$$\begin{cases}
y = 1 - x^4 \\
y = 3x - 2
\end{cases}$$



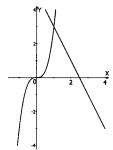


Одно решение.

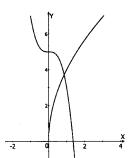
2 корня.

$$\mathbf{B}) \begin{cases} y = 3x^3 \\ y = 5 - 2x \end{cases}$$

$$\Gamma) \begin{cases} y = 4\sqrt{x} \\ y = 5 - 2x^3 \end{cases}$$



1 корень.



1 корень.

$$f(x) = \begin{cases} -2, \text{если } x \le -1 \\ 2x^3, \text{если } -1 < x \le 1 \\ \sqrt{x}, \text{если } x > 1 \end{cases}$$

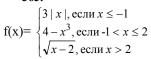
- 1) $D(f)=(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на [-1; 1] и на $(1; +\infty)$.

Ha (-∞; -1] постоянна.

- 4) Ограничена снизу, не ограничена сверху.
- 5) $y_{\text{наим}}$ =-2, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна на $(-\infty; 1)$ и на $(1; +\infty)$.
- 7) $E(f)=[-2; +\infty)$.
- 8) Выпукла: вверх на [-1; 0] и на $(1; +\infty)$, вниз на [0; 1].

На $(-\infty; -1]$ можно считать функцию выпуклой как вверх, так и вниз.

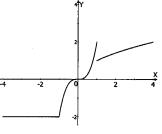
363.

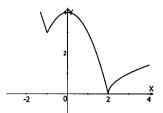


- 1) $D(f)=(-\infty; +\infty)$.
- 2) Ни четная, ни нечетная.
- 3) Возрастает на [-1; 0] и на [2; +∞).

Убывает на $(-\infty; -1]$ и на [0; 2].

- 4) Ограничена снизу, не ограничена сверху.
- 5) $y_{\text{наим}} = 0$, $y_{\text{наиб}}$ не существует.
- 6) Непрерывна на D(f). 7) $E(f)=[0; +\infty)$.
- 8) Выпукла: вверх на [-1; 2] и на $[2; +\infty)$.





На $(-\infty; -1]$ можно считать функцию выпуклой как вверх, так и вниз.

364.

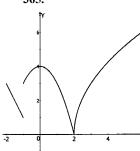
a)
$$2x^3 \ge 3-x$$
; $2x^3-2 \ge 3-x-2$; $2(x^3-1)+(x-1)\ge 0$; $2(x-1)(x^2+x+1)+(x-1)\ge 0$
 $(x-1)(2x^2+2x+3)\ge 0$; $2x^2+2x+3>0$, так как $D=1-6=-5<0$.

Разделим обе части на это выражение $(x-1)\ge 0$; $x\ge 1$;

$$6) -x^4 < \sqrt{x} ; -x^4 \le 0 \le \sqrt{x}$$
.

Единственная точка, где $\sqrt{x} = -x^4 - \text{есть } 0$. В остальных точках, принадлежащих области определения, неравенство верно. x > 0.

365.



$$f(x) = \begin{cases} -1 - 2x, \text{ если } x \le -1 \\ 4 - x^2, \text{ если -1} < x \le 2 \\ 3\sqrt{x - 2}, \text{ если 2} < x \le 6 \end{cases}$$

a)

б) При а<0 нет корней.

При a=0 или a>6-1 корень.

При 0<a<1 или 4<a≤6 – 2 корня.

При a=4 или $1 \le a \le 3 - 3$ корня.

При 3<a<4 – 4 корня.

Домашняя контрольная работа.

ВАРИАНТ 1.

1.
$$f(x)=y=\frac{3}{\sqrt{x^2+4x-12}}$$
; $x^2+4x-12>0$; $\frac{D}{4}=4+12=16$;

$$\begin{bmatrix} x_1 = -2 + 4 = 2 \\ x_2 = -6 \end{bmatrix}; (x+6)(x-2) > 0; x > 2, x < -6. D(f) = (-\infty; -6) \cup (2; +\infty).$$

2. y=f(x); f(x)=
$$\sqrt{\frac{2-x}{x-7}} \cdot \sqrt{\frac{x-4}{x-5}}$$
;

3.
$$E(f)=\{3, 4, 5, 6, 7, 8, 9\}.$$

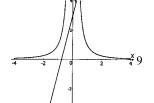
4.
$$f(x)=y=3x^3+4x+5, x \in [0; +\infty)$$
.

Возьмем произвольные x_1 и x_2 из $[0; +\infty)$, такие, что $x_1 < x_2$. Тогда $x_1^3 < x_2^3 \Leftrightarrow 3x_1^3 < 3x_2^3 \Leftrightarrow 3x_1^3 + 4x_1 < 3x_2^3 + 4x_2 \Leftrightarrow 3x_1^3 + 4x_1 + 5 < 3x_2 + 4x_2 + 5$.

 $f(x_1) < f(x_2)$. Функция возрастает.

5.
$$h(x)=-2x-1$$
.

6.
$$x^{-2}=4x+3$$
.



Один корень.

7.
$$f(x)=y=(x+2)^4-2$$
 на $[-1;4]$

$$y_{\text{Haum}} = f(-1) = -1; y_{\text{Hau6}} = f(4) = 6^4 - 2 = 1294.$$

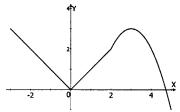
4 2 4 4 A

- a) x=1;
- б) 0<x≤1;
- B) x > 1.

9.
$$f(x)=x^{-2}$$
, $g(x)=x^4$

$$\frac{f(4x)}{f(x^2)} = \frac{(4x)^{-2}}{(x^2)^{-2}} = \frac{x^{-2}}{16x^{-4}} = \frac{x^2}{16} = \frac{1}{4} \sqrt{\frac{x^4}{16}} = \frac{1}{4} \sqrt{(\frac{x^2}{2})^4} = \frac{1}{4} \sqrt{y(\frac{x}{2})}$$

10. f(x)=
$$\begin{cases} |x|, если x < 2 \\ (-x-3)^2, если x \ge 2 \end{cases}$$



При р>3 – одно решение.

При p=3 и p=0-2 решения.

При 0 решения.

При р<0 − одно решение.

ВАРИАНТ 2.

1.
$$f(x)=y=\frac{6}{\sqrt{-x^2+5x-24}}$$
; $-x^2+5x-24>0$; $x^2-5x+24<0$;

Таких х не существует. $D(f)=\emptyset$.

2. y=f(x);
$$f(x) = \sqrt{\frac{3-x}{x+4}} \cdot \sqrt{\frac{x-1}{x+2}}$$

3.
$$E(f)=\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

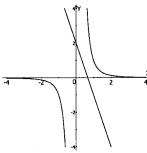
4. $f(x)=y=-x^4-x^2+8, x \in [0; +\infty).$

Возьмем произвольные x_1 и x_2 из $[0:+\infty)$, такие, что $x_1 < x_2$. Тогда $x_1^4 < x_2^4 \Leftrightarrow -x_1^4 < -x_2^4; x_1^2 < x_2^2 \Leftrightarrow -x_1^2 > -x_2^2$ Складывая два последних неравенства, получим: $-x_1^4 - x_1^2 > -x_2^4 - x_2^2; -x_1^4 - x_1^2 + 8 > -x_2^4 - x_2^2 + 8; f(x_1) > f(x_2)$. Функция

$$-x_1^4-x_1^2>-x_2^4-x_2^2$$
; $-x_1^4-x_1^2+8>-x_2^4-x_2^2+8$; $f(x_1)>f(x_2)$. Функция убывает.

5.
$$h(x) = -(x+1)^2 + 1$$

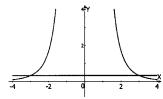
6.
$$x^{-3} = 2 - 3x$$
.



Корней нет.

7.
$$f(x)=y=(1-x)^3+3$$
 на отрезке [2; 3]

$$y_{\text{наим}} = f(3) = -5; y_{\text{наи6}} = f(2) = 2.$$

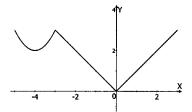


a)
$$x=3$$
, $x=-3$; 6) $x>3$, $x<-3$; B) $0< x \le 3$; $-3 \le x < 0$.

9.
$$f(x)=x^4$$
, $g(x)=x^{-1}$

При x<0,
$$\sqrt{4\sqrt{f(x)}}$$
 +2(g(x))⁻¹=2 $\sqrt{x^2}$ +2(x⁻¹)⁻¹=2|x|+2x=-2x+2x=0.

10. f(x)=
$$\begin{cases} (x+4)^2 + 2, если x < -3 \\ |x|, если x \ge -3 \end{cases}$$



При p<0 корней нет. При p=0 – один корень. При 0<p<2 – 2 корня. При p=2 и p \geq 3 – 3 корня. При 2<p<3 – 4 корня.

Глава 4. Прогрессии

§ 17. Определение числовой последовательности и способы ее задания

366.

- а) Нет, не является.
- б) Нет, не является.
- в) Нет, не является.
- г) Да, является.

367.

- а) Нет, не является.
- б) Нет, не является.
- в) Нет, не является.
- г) Да, является.

368.

Пусть х – число минут, а у – число капель, упавших на землю.

Тогда моделью задачи будет функция y=5x, $x \in N$.

Эта математическая модель является числовой последовательностью.

369.

- a) μ a, $y_n = n^2$; $y_1 = 1$, $y_2 = 4$, $y_3 = 9$, $y_4 = 16$, $y_5 = 25$.
- б) Да, $y_n = n^3$; $y_1 = 1$, $y_2 = 8$, $y_3 = 27$, $y_4 = 64$, $y_5 = 125$.
- в) Да, $y_n=7$; $y_1=7$, $y_2=7$, $y_3=7$, $y_4=7$, $y_5=7$.
- г) Нет.

370.

- a) $y_n = n^2$.
- б) Последовательность четных чисел.
- B) $y_1=0$, $y_n=y_{n-1}+5$.

371

Последовательность натуральных чисел, кратных пяти: 5, 10, 15, 20, 25

$$y_6=30, y_{21}=105, y_n=5n.$$

372.

Последовательность натуральных чисел, кратных семи: 7, 14, 21, 28, 35

$$y_8=56$$
, $y_{10}=70$, $y_{37}=259$, $y_n=7n$.

373

$$a_1=1$$
, $a_2=8$, $a_3=27$, $a_4=64$, $a_5=125$, $a_n=n^3$.

$$c_1=2$$
, $c_2=4$, $c_3=8$, $c_4=16$, $c_n=2^n$.

- а) За y_{31} следует y_{32} , за y_n-y_{n+1} , за $y_{n+9}-y_{n+10}$, за $y_{2n}-y_{2n+1}$;
- б) члену y_{91} предшествует y_{90} , $y_{639} y_{638}$,

$$y_{n-1} - y_{n-2}$$
,

 $y_{3n} - y_{3n-1}$.

376.

- B) a_{n+4} , a_{n+5} , a_{n+6} , a_{n+7} , a_{n+8} , a_{n+9} ; Γ) a_{n-1} , a_n , a_{n+1} .

377.

- a) $a_n=4n+1$; $a_1=5$, $a_2=9$, $a_3=13$, $a_4=17$, $a_5=21$;
- 6) $c_n = -7n + 3$; $c_1 = -4$, $c_2 = -11$, $c_3 = -18$, $c_4 = -25$, $c_5 = -32$;
- B) $b_n=5n+2$; $b_1=7$, $b_2=12$, $b_3=17$, $b_4=22$, $b_5=27$;
- Γ) $a_n = -3n 7$; $a_1 = -10$, $a_2 = -13$, $a_3 = -16$, $a_4 = -19$, $a_5 = -22$.

378

a)
$$a_n = \frac{1}{n+5}$$
; $a_1 = \frac{1}{6}$, $a_2 = \frac{1}{7}$, $a_3 = \frac{1}{8}$, $a_4 = \frac{1}{9}$, $a_5 = \frac{1}{10}$;

б)
$$d_n = \frac{-2}{3-n}$$
; $d_1 = -1$, $d_2 = -2$, d_3 — не существует; $d_4 = 2$; $d_5 = 1$

B)
$$c_n = \frac{3}{2n+4}$$
; $c_1 = \frac{1}{2}$, $c_2 = \frac{3}{8}$, $c_3 = \frac{3}{10}$, $c_4 = \frac{1}{4}$, $c_5 = \frac{3}{14}$;

r)
$$a_n = \frac{-3}{4n-1}$$
; $a_1 = -1$, $a_2 = -\frac{3}{7}$, $a_3 = -\frac{3}{11}$, $a_4 = -\frac{1}{5}$, $a_5 = -\frac{3}{19}$.

379

a)
$$x_n=n^2+1$$
; $x_1=2$, $x_2=5$, $x_3=10$, $x_4=17$, $x_5=26$;

б)
$$y_n = -n^3 - 10$$
; $y_1 = -11$, $y_2 = -18$, $y_3 = -37$, $y_4 = -74$, $y_5 = -135$;

B)
$$z_n = -n^3 + 5$$
; $z_1 = 4$, $z_2 = -3$, $z_3 = -22$, $z_4 = -59$, $z_5 = -120$;

r)
$$w_n = n^2 - 15$$
; $z_1 = -14$, $z_2 = -11$, $z_3 = -6$, $z_4 = 1$, $z_5 = 10$.

380.

a)
$$y_n=n$$
; б) $y_n=n-3$;

B)
$$y_n = n + 5$$
;

Γ) $y_n = -n$.

381.

B)
$$y_n = 2n + 2$$
;

Γ) $y_n=4n$.

382

- a) $y_n = n^2$; 6) $y_n = (n+1)^2$;
- B) $y_n = n^2 + 1$; Γ) $y_n = n^3$.

- a) $x_1=1$, $x_2=4$, $x_3=1$, $x_4=4$, $x_5=1$, $x_6=4$;
- 6) $x_1 = -5$, $x_2 = 5$, $x_3 = 15$, $x_4 = 25$, $x_5 = 35$, $x_6 = 45$;

B)
$$x_1=1$$
, $x_2=3$, $x_3=5$, $x_4=7$, $x_5=9$, $x_6=11$;

$$\Gamma$$
) $x_1=-3$, $x_2=1$, $x_3=-3$, $x_4=1$, $x_5=-3$, $x_6=1$.

384

a)
$$x_1=1$$
, $x_2=2$, $x_3=6$, $x_4=24$, $x_5=120$, $x_6=720$;

6)
$$x_1=-3$$
, $x_2=3$, $x_3=-3$, $x_4=3$, $x_5=-3$, $x_6=3$;

B)
$$x_1 = -512$$
, $x_2 = -256$, $x_3 = -128$, $x_4 = -64$, $x_5 = -32$, $x_6 = -16$;

$$\Gamma$$
) $x_1=1$, $x_2=10$, $x_3=100$, $x_4=1000$, $x_5=10000$, $x_6=100000$.

385

a) $y_n=3n+4$; $y_{n+1}=3(n+1)+4=3n+4+3>3n+4=y_n$.

Последовательность возрастающая.

6) $y_n=5n-3$; $y_{n+1}=5(n+1)-3=5n-3+5>5n-3=y_n$.

Последовательность возрастающая.

 $_{B})\;y_{n}\!\!=\!\!7n-2;\;\;y_{n+1}\!\!=\!\!7(n+1)\!\!-\!\!2\!\!=\!\!7n-2+7\!\!>\!\!7n-2\!\!=\!\!y_{n}.$

Последовательность возрастающая.

 $\Gamma) \ y_n \!\!=\!\! 4n\!-\!1; \ \ y_{n+1} \!\!=\!\! 4(n\!+\!1)\!-\!1 \!\!=\!\! 4n\!-\!1 \!+\! 4 \!\!>\!\! 4n\!-\!1 \!\!=\!\! y_n.$

Последовательность возрастающая.

386.

a)
$$y_n = -2n-3$$
; $y_{n+1} = -2(n+1)-3 = -2n-3-2 < -2n-3 = y_n$.

Последовательность убывающая.

б)
$$y_n = -3n+4$$
; $y_{n+1} = -3(n+1)+4 = -3n+4-3 < -3n+4 = y_n$.

Последовательность убывающая.

B)
$$y_n=4-5n$$
; $y_{n+1}=4-5(n+1)=4-5n-5<4-5n=y_n$.

Последовательность убывающая.

 Γ) $y_n = -n+8$; $y_{n+1} = -(n+1)+8 = -n+8-1 < -n+8 = y_n$.

Последовательность убывающая.

387

$$x_1=4$$
, $x_2=9$, $x_3=25$, $x_4=49$, $x_5=121$, $x_6=169$, $x_7=289$.

388

- a) $x_n = (-2)^n$; $x_1 = -2$, $x_2 = 4$, $x_3 = -8$, $x_4 = 16$, $x_5 = -32$;
- 6) $c_n = (-1)^{n+1} (-1)^n$; $x_1 = 2$, $x_2 = -2$, $x_3 = 2$, $x_4 = -2$, $x_5 = 2$;
- B) $b_n=2(-3)^{n-1}$; $b_1=2$, $b_2=-6$, $b_3=18$, $b_4=-54$, $b_5=162$;
- Γ) $d_n = (-2)^n + (-2)^{n+1}$; $d_1 = -1$, $d_2 = 2$, $d_3 = -4$, $d_4 = 8$, $d_5 = -16$.

- a) $y_n = (-1)^n + (-2)^{n+1}$, $y_2 = -7$, $y_4 = -31$, $y_6 = -127$;
- 6) $x_n = (-2)^{n+1} (-2)^{n-1}$, $x_2 = -8 + 2 = -6$, $x_4 = -32 + 8 = -24$, $x_6 = -128 + 32 = -96$;
- B) $z_n = (-2)^n (-2)^{n+1}$, $z_2 = 4 + 8 = 12$, $z_4 = 16 + 32 = 48$,
- $z_6=164+128=192$ ответ в задачнике неверен;
- Γ) $W_n = (-1)^{n+1} (-2)^n$, $W_2 = -1 4 = -5$, $W_4 = -1 16 = -17$,

 w_6 =-1-64=-65 - ответ в задачнике неверен.

390.

a)
$$y_n = (-1)^n + 2^n$$
, $y_1 = 1$, $y_3 = 7$, $y_5 = 31$;

6)
$$x_n = (-2)^n + 16$$
, $x_1 = 14$, $x_3 = 8$, $x_5 = -16$;

в)
$$y_n = (-2)^n + 4^n$$
, $y_1 = 2$, $y_3 = 4$ – ответ в задачнике неверен; $y_5 = -12$;

$$\Gamma$$
) $y_n = (-1)^n - 1$, $y_1 = -2$, $y_3 = -2$, $y_5 = -2$.

391.

392

a)
$$x_n = (-1)^n \frac{2n}{3n-1}$$
; 6) $x_n = \frac{2n-1}{(\sqrt{2})^n}$; B) $(-1)^{n+1} \frac{2^n}{5n}$; Γ) $(-1)^n \frac{n^2}{\sqrt{n(n+1)}}$.

393

$$x_1 = -3, x_2 = -2, x_n = 2(x_{n-2} + x_{n-1}); x_3 = -10, x_4 = -24, x_5 = -68, x_6 = -184.$$

394

a)
$$x_{n+1}=x_n$$
, $x_1=2$; 6) $x_n=x_{n-1}+2$, $x_1=2$;

B)
$$x_n = x_{n-1} - 2$$
, $x_1 = 9$; Γ) $x_n = -x_{n-1}$, $x_1 = 5$.

395

a)
$$x_n = 3x_{n-1}, x_1 = 2; \delta)x_n = x_{n-1} + 7, x_1 = 1;$$

B)
$$x_n = \frac{1}{2} x_{n-1}, x_1 = \frac{1}{2};$$
 Γ) $x_n = -3x_{n-1}, x_1 = 3;$

396.

397

 a_n — последовательность

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = 0,1 + 0,111 + 0,1111 + 0,11111 +$$

$$x_n = \frac{n+1}{3n+2}$$
;

a)
$$\frac{5}{14}$$
; $\frac{5}{14} = \frac{n+1}{3n+2} \Leftrightarrow 15n+10=14n+14$; n=4;

6)
$$\frac{14}{41}$$
; $\frac{14}{41} = \frac{n+1}{3n+2} \Leftrightarrow 42n+28=41n+41$; n=13;

B)
$$\frac{6}{13}$$
; $\frac{6}{13} = \frac{n+1}{3n+2} \Leftrightarrow 18n+12=13n+13$;

5n=1, т. е. $n=\frac{1}{5}$, чего, очевидно, быть не может, так как n∈N;

r)
$$\frac{8}{23}$$
; $\frac{n+1}{3n+2} = \frac{8}{23}$; $23n+23=24n+16$; $n=7$.

399.

$$a_n(2n-1)(3n+2)$$

a)
$$0=(2n-1)(3n+2)$$

$$n = \frac{1}{2}$$
 или $n = -\frac{2}{3}$, чего, очевидно, быть не может, так как $n \in \mathbb{N}$.

Такого п не существует, значит 0 – не член последовательности.

6)
$$24=(2n-1)(3n+2)$$

$$6n^2+n-26=0$$
;

$$n_1 = \frac{-1+25}{12} = 2;$$

$$n_2 = \frac{-1 - 25}{2} < 0$$
 — не подходит, так как n—натуральное.

Итак, n=2. 24 – второй член последовательности.

B)
$$153=(2n-1)(3n+2)$$
;

$$6n^2+n-155=0$$
;

$$n_1 = \frac{-1+61}{12} = 5;$$

$$n_2 = \frac{-1-61}{12} < 0$$
, не подходит, так как $n \in N$.

Итак. n=5.

153 – пятый член последовательности.

$$\Gamma$$
) $-2=(2n-1)(3n+2)$

Оба множителя в правой части положительны (так как $n \in N$), а левая часть отрицательна. Такого быть не может.

Таких n нет, (-2) – не член последовательности.

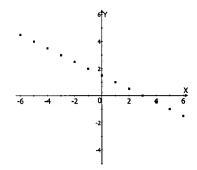
a)
$$x_1=3$$
, $x_n=x_{n-1}+5$; $x_n=3+5(n-1)=5n-2$;

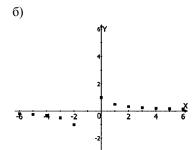
6)
$$x_1=2$$
, $x_n=3\cdot x_{n-1}$; $x_n=2\cdot 3^{n-1}$;

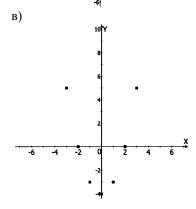
B)
$$x_1=11$$
, $x_n=x_{n-1}-4$; $x_n=11-4(n-1)=15-4n$;

$$\Gamma$$
) $x_1=3$, $x_n \frac{x_{n-1}}{2}$; $x_n = \frac{3}{2^{(n-1)}}$.

a)







г)

402.

a)
$$x_n$$
=2n-5, A=10; 2n-5>10; 2n>15 n> $\frac{15}{2}$; Начиная с n=8;

6)
$$x_n=3^{n-1}$$
, A=27, $3^{n-1}>27$,

$$3^{n-1} > 27$$

$$n-1>3$$
,

n>4.

Начиная с n=5;

$$n^2-17>-2$$

$$n^2 > 15$$
.

$$n > \sqrt{15}$$
 (n<-√15 отбрасываем, так как n∈N).

Начиная с n=4;
г)
$$x_n=2^{n-5}$$
, A=1,5, $2^{n-5}>1,5$,

$$2^{n-5} > 1,5$$

$$2^{n-5} > \frac{3}{2}$$

$$2^{n-4} > 3$$
.

Начиная с n=6.

403.

a)
$$x_n=3-2n$$
, $A=-9$,

2n<12,

n>6.

Начиная с n=7;
б)
$$x_n=3^{4-n}$$
, A=0,5,

$$3^{4-n} < 0.5$$
.

Начиная с n=5.

B)
$$x_n=2-3n^2$$
, A=-25, $2-3n^2<-25$,

$$2-3n^2 < -25$$

$$3n^2 < 28$$

$$n^2 > \frac{28}{3}$$
.

Начиная с n=4;

$$\Gamma$$
) $x_n=2^{5-n}$, A=1, $2^{5-n} < 1$,

$$2^{5-n} < 1$$

$$5-n<0$$
,

n>5.

Начиная с n=6.

404.

a)
$$a_n = \frac{n-1}{n} = 1 - \frac{1}{n}$$
;

$$a_{n+1} = 1 - \frac{1}{n+1} > 1 - \frac{1}{n} = a_n;$$

 $a_{n+1} > a_n$. Последовательность возрастает.

б)
$$b_n = 1 - \frac{1}{2n}$$
;

$$b_{n+1}=1-\frac{1}{2(n+1)}>1-\frac{1}{2n}=b_n;$$

 $b_{n+1} \!\!>\!\! b_n$. Последовательность возрастает.

B)
$$c_n = 1 - \frac{1}{2^n}$$
;

$$c_{n+1}=1-\frac{1}{2^{n+1}}>1-\frac{1}{2^n}=c_n;$$

$$c_{n+1} > c_n$$
. Последовательность возрастает.
 $c_n = \frac{5n}{n+1} = \frac{5n+5-5}{n+1} = 5 - \frac{5}{n+1}$;

$$d_{n+1}=5-\frac{5}{n+2}>5-\frac{5}{n+1}=d_n;$$

 $d_{n+1} > d_n$. Последовательность возрастает.

a)
$$a_n = \frac{1}{2n}$$
;

$$a_{n+1} = \frac{1}{2n+2} < \frac{1}{2n} = a_n;$$

$$a_{n+1} \le a_{n}$$
.

Последовательность убывает.

6)
$$c_n = 1 + \frac{1}{3n}$$
;

$$a_{n+1} = \frac{1}{3n+3} < \frac{1}{3n} = c_n;$$

Последовательность убывает.

B)
$$b_n = \frac{n+1}{n} = 1 + \frac{1}{n}$$
;

$$b_{n+1}=1+\frac{1}{n+1}<1+\frac{1}{n}=b_n;$$

 $b_{n+1} \!\! < \!\! b_{n.}.$ Последовательность убывает.

$$\Gamma$$
) $d_n = \frac{1}{3^n}$;

$$d_{n+1} = \frac{1}{3^{n+1}} < \frac{1}{3^n} = d_n;$$

Последовательность убывает.

§ 18. Арифметическая прогрессия

406.

- а) Да, является. б) Да, является.
- в) Да, является. г) Нет, не является.

407.

- а) Да, является.
- б) Нет, не является.
- в) Нет, не является.
- г) Нет, не является.

408.

- a) $a_1=3$; d=-4;
- б) $a_1=7$; d=-3;
- B) $a_1=0,7$; d=0,2;
- Γ) $a_1 = -1$; d = 0, 1.

- a) $a_1=3$; d=7,
- $a_1=3$, $a_2=10$, $a_3=17$, $a_4=24$, $a_5=31$, $a_6=38$;

6)
$$a_1$$
=10; d=-2,5, a_1 =10, a_2 =7,5, a_3 =5, a_4 =2,5, a_5 =0, a_6 =-2,5; a_1 =-21; d=3, a_1 =-21, a_2 =-18, a_3 =-15, a_4 =-12, a_5 =-9, a_6 =-6; a_1 =-17,5; d=-0,5. a_1 =-17,5, a_2 =-18, a_3 =-18,5, a_4 =-19, a_5 =-19,5, a_6 =-20. **410.** a) a_1 =-2; d=4, a_1 =-2; d=4, a_1 =-2; d=4, a_2 =-19, 14;

б) $a_1=1$; d=-0,1, n=7; 1; 0,9; 0,8; 0,7; 0,6; 0,5; 0,4;

в) a₁=2; d=3, n=6; 2; 5; 8; 11; 14; 17

 Γ) $a_1 = -6$; d = 1, 5, n = 4; -6; -4, 5; -3; -1, 5.

411.

a)
$$a_1 = \frac{3}{7}$$
; $d = \frac{1}{7}$, $n = 5$

$$\frac{3}{7}$$
; $\frac{4}{7}$; $\frac{5}{7}$; $\frac{6}{7}$; 1;

6)
$$a_1=13$$
; $d=-\sqrt{5}$, $n=4$

13;
$$13 - \sqrt{5}$$
; $13 - 2\sqrt{5}$; $13 - 3\sqrt{5}$;

B)
$$a_1=7.5$$
; $d=0.5$, $n=4$

7,5; 8; 8,5; 9;

$$\Gamma$$
) a₁=-1,7; d=0,15, n=5

$$-1,7; -1,55; -1,4; -1,25; -1,1.$$

411.

a)
$$a_1 = \frac{3}{7}$$
; $a_2 = \frac{4}{7}$; $a_3 = \frac{5}{7}$; $a_4 = \frac{6}{7}$; $a_5 = 1$;

6)
$$a_1=13$$
, $a_2=13-\sqrt{5}$; $a_3=13-2\sqrt{5}$; $a_4=13-3\sqrt{5}$;

B)
$$a_1=7.5$$
; $a_2=8$; $a_3=8.5$; $a_4=9$;

r)
$$a_1$$
=-1,7; a_2 =-1,55; a_3 =-1,4; a_4 =-1,25; a_5 =-1,1.

412.

- a) $d=a_2-a_1=3-1=2$; $a_{10}=a_1+9d=1+9\cdot 2=19$;
- 6) $d=a_2-a_1=6+\sqrt{5}-\sqrt{5}=6$; $a_{10}=a_1+9d=\sqrt{5}+9.6=54+\sqrt{5}$;
- B) $d=a_2-a_1=90-100=-10$; $a_{10}=a_1+9d=100+9\cdot(-10)=10$;
- Γ) d=a₂-a₁=3- $\sqrt{2}$ -3=- $\sqrt{2}$; a₁₀=a₁+9d=3+9(- $\sqrt{2}$)=3-9 $\sqrt{2}$.

413.

Такие натуральные числа, представляются в виде n=3+5k, где $k=1,2,3\dots$, так что они составляют арифметическую прогрессию: $a_1=3$; d=5. Опечатка в ответе задачника.

Такие натуральные числа, представляются в виде n=11k, где $k=1,2,3\dots$, так что они составляют арифметическую прогрессию: $a_1=11;d=11$.

415.

Данные числа не являются арифметической прогрессией, так как a_2 - a_1 = 3^2 - 3^1 , а a_3 - a_2 = 3^3 - 3^2 =18, и $3 \neq 18$.

416

а) x_1 =4; d=3; б) не является арифметической прогрессией; в) не является арифметической прогрессией; г) x_1 =1; d=4.

417

- а) $a_n=2n+1$; $a_n=(n-1)\cdot 2+3=(n-1)\cdot d+a_1$, где $a_1=3$ и d=2;
- б) $a_n = 0.5 \text{ n-4}$; $a_n = (\text{n-1}) \cdot 0.5 3.5 = (\text{n-1}) \cdot d + a_1$, где $a_1 = -3.5$ и d = 0.5;
- в) a_n =-3n+1; a_n =(n-1)·(-3)-2=(n-1)·d+ a_1 , где a_1 =-2 и d=-3;

г)
$$a_n = -\frac{1}{3}$$
 n-1; $a_n = (n-1)(-\frac{1}{3}) - \frac{4}{3} = (n-1) \cdot d + a_1$, где $a_1 = -\frac{4}{3}$ и $d = -\frac{1}{3}$.

418.

a)
$$a_n=3n-1$$
; б) $a_n=n-0.5$; в) $a_n=-2n+9$; г) $a_n=-\frac{n}{7}-\frac{6}{7}$.

419.

а)
$$a_n$$
=-6n+10; б) a_n =-0,2n-0,5; в) a_n =5n-12; г) a_n = $\sqrt{5}$ n-3 $\sqrt{5}$.

420.

$$a_6 = a_1 + 5d = 4 + 5 \cdot 3 = 19$$
; 6) $a_{15} = a_1 + 14d = -15 + 14(-5) = -85$;

B)
$$a_{17}=a_1+16d=-12+16\cdot 2=20$$
; r) $a_9=a_1+8d=101+8\cdot \frac{1}{2}=105$.

421.

a)
$$a_5 = a_1 + 4d$$
, $d = \frac{a_5 - a_1}{4} = \frac{40 - 12}{4} = 7$;

6)
$$a_{16}=a_6+10d$$
, $d=\frac{a_{16}-a_6}{10}=\frac{30-(-30)}{10}=6$;

в)
$$a_{11}=a_1+10d$$
, $d=\frac{a_{11}-a_1}{10}=\frac{-28-(-8)}{10}=-2$; опечатка в ответе

задачника

r)
$$a_{36} = a_{11} + 25d$$
, $d = \frac{a_{36} - a_{11}}{25} = \frac{54,6 - 4,6}{25} = 2$.

- a) $a_7 = a_1 + 6d$, $a_1 = a_7 6d = 9 6 \cdot 2 = -3$;
- б) $a_{37}=a_1+36d$, $a_1=a_{37}-36d=-69-36(-2,5)=21$;
- B) $a_{26}=a_1+25d$, $a_1=a_{26}-25d=-71-25(-3)=4$;
- Γ) $a_{14}=a_1+13d$, $a_1=a_{14}-13d=-6\sqrt{5}-13(-\sqrt{5})=7\sqrt{5}$.

423

а) a_1 =1; d=3; б) a_1 =- $\frac{4}{3}$; d=- $\frac{1}{3}$; в) a_1 =2,9; d=-0,1; г) a_1 =3; d=-2.

424.

У данной прогрессии a_1 =9 и d=2, тогда если a_n =29, то 29=9+2(n-1), 29=7+2n, n=11.

425.

а) a_1 =-1,5; d=0,5, так что 4,5= a_1 +12d, то есть 4,5 - 13-й член прогрессии;

б)
$$a_1$$
=7,5; d=3,5, так что если 43,5= a_1 +nd, то $n = \frac{43,5 - a_1}{d} = \frac{36}{3,5} = \frac{72}{7}$,

так что 43,5 - не является членом прогрессии.

426

 $41=-7+12\cdot 4=a_1+12d$, так что 41-13-й член данной прогрессии.

427.

23; 19; 15.

428

a)
$$a_n=a_1+(n-1)\cdot d=1+10\cdot 2=21$$
;

6)
$$a_n=a_1+(n-1)\cdot d=-1\frac{1}{2}+20\cdot (-3,75)=-76,5;$$

B)
$$a_n = a_1 + (n-1) \cdot d = \frac{2}{3} + 16 \cdot \frac{3}{4} = 12 \cdot \frac{2}{3}$$
;

$$\Gamma$$
) $a_n = a_1 + (n-1) \cdot d = 0, 2 + 12 \cdot \frac{1}{3} = 4, 2.$

$$a_n=a_1+(n-1)\cdot d$$
, так что $n=\frac{a_n-a_1}{d}+1$;

a)
$$n = \frac{(67-1)\cdot 3}{2} + 1 = 100$$
; 6) $n = \frac{5-0}{0.5} + 1 = 11$;

B)
$$n = \frac{10.5 - (-6)}{0.75} + 1 = 23$$
; r) $n = \frac{100 - (-4.5)}{5.5} + 1 = 20$.

 $a_n=a_1+(n-1)\cdot d$; $a_1=a_n-(n-1)d$:

a)
$$a_1 = -10 - 14 \cdot 2 = -38$$
; 6) $a_1 = 10 \frac{1}{2} - 6 \cdot \frac{1}{4} = 9$;

B) $a_1=9,5-16\cdot(-0,6)=19,1$; Γ) $a_1=-2,94-14\cdot(-0,3)=1,26$.

431.

$$a_n = a_1 + (n-1) \cdot d$$
, $d = \frac{a_n - a_1}{n-1}$:

a)
$$d = \frac{39-3}{11-1} = 3,6$$
; б) $d = \frac{-18,4-(-0,2)}{15-1} = -1,3$;

B)
$$d = \frac{1\frac{1}{4} - 5\frac{5}{8}}{36 - 1} = \frac{1}{8}$$
; r) $d = \frac{0 - 3.6}{37 - 1} = -0.1$.

432

 $b=a_1+(n-1)d$, $n=\frac{b-a_1}{d}+1$, если b - является членом прогрессии:

а) n=
$$\frac{21,2-5}{0,3}$$
 +1=55; б) n= $\frac{0,65-3}{-0,35}$ +1≈7,7 - так b - не является членом

прогрессии

B)
$$n = \frac{44 - (-7)}{5,1} + 1 = 11$$
; r) $n = \frac{-0.01 - (-0.13)}{0.02} + 1 = 7$.

433

- а) $a_n=a_1+(n-1)d$, $a_n=2+(n-1)(-0,1)=2,1-0,1n$, $a_n<0$ при 2,1-0,1<0, n>21, n=22;
- б) a_n =16,3-0,4n, a_n <0,9, при 16,3-0,4n<0,9, n>38,5, n=39;
- в) $a_n=120-10n$, $a_n<15$, при 120-10n<15, n>10,5, n=11;
- г) a_n =-0,25-0,75n, a_n <-16,3, при -0,25-0,75n<-16,3, n>21,4, n=22.

- а) a_n =-12+(n-1)·3=-15+3n, a_n >141, при -15+3n>141, n>52, n=53;
- б) a_n =-10+5,5n, a_n >0, при -10+5,5n>0, $n>\frac{20}{11}$, n=2;
- в) a_n =1,8+2,2n, a_n >14,7, при 1,8+2,2n>14,7, n> $\frac{129}{22}$, n=6;
- г) a_n =13,8+0,7n, a_n >22,9, при 13,8+0,7n>22,9 n>13, n=14.

$$\begin{cases} a_1+a_5=14\\ a_2a_4=45 \end{cases} \begin{cases} a_1+a_1+4d=14\\ (a_1+d)(a_1+3d)=45 \end{cases} \begin{cases} a_1+2d=7\\ (7-d)(7+d)=45 \end{cases}$$

$$\begin{cases} a_1=7-2d\\ 49-d^2=45 \end{cases} \begin{cases} a_1=7-2d\\ d^2=4 \end{cases}, \text{ так как d>0 по условию, то d=2.}$$

Тогда $a_6=a_1+5d=3+10=13$.

436.

$$\begin{cases} a_2 + a_5 = 18 & a_2 + a_2 + 3d = 17 \\ a_2 \cdot a_3 = 21 & a_2(a_2 + d) = 21 \end{cases} = \begin{cases} 2a_2 + 3d = 17 \\ a_2(a_2 + d) = 21 \end{cases}$$

так как a_2 - натуральное число, то a_2 =3 и d=4, тогда a_1 =-1 и прогрессия: -1, 3, 7, 11, 15 ...

437

$$\begin{cases} a_1+a_2+a_3=-21\\ a_2+a_3+a_4=-6 \end{cases}$$
 , и $a_1,\,a_2,\,a_3,\,a_4$ - арифметическая прогрессия, так

что

$$\begin{cases} a_1 + a_1 + d + a_1 + 2d = -21 \\ a_1 + d + a_1 + 2d + a_1 + 3d = -6 \end{cases}, \begin{cases} a_1 + d = -7 \\ a_1 + 2d = -2 \end{cases}, a_1 = -12, d = 5,$$

эти числа: -12, -7, -2, 3. (опечатка в ответе задачника)

438.

$$S_n = \frac{a_1 + a_n}{2} \cdot n$$
:

a)
$$S_{30} = \frac{-1+86}{2} \cdot 30 = 1275$$
; 6) $S_{20} = \frac{41-16}{2} \cdot 20 = 250$;

B)
$$S_{10} = \frac{-13-5}{2} \cdot 10 = -90$$
; Γ) $S_{25} = \frac{17+31}{2} \cdot 25 = 600$.

439. a)
$$S_{50} = \frac{2+147}{2} \cdot 50 = 3725$$
; 6) $S_{50} = \frac{0.5-97.5}{2} \cdot 50 = -2425$;

в)
$$S_{50} = \frac{-10 + 137}{2} \cdot 50 = 3175$$
; г) $S_{50} = \frac{-1,7 - 8,1}{2} \cdot 50 = 245$.

$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$$
, $S_{100} = 100a_1 + 4950d$:

a)
$$S_{100} = 100 \cdot (-12) + 4950 \cdot 2 = 8700$$
; б) $S_{100} = 100 \cdot (1,5) + 4950 \cdot 0,5 = 262$;

B)
$$S_{100}=100.73+4950(-1)=2350$$
; Γ) $S_{100}=100.(-1,7)+4950.(8,1)=-40265$.

$$S_n = \frac{2a_1 + (n-1)d}{2} \cdot n$$
:

a)
$$S_{16} = \frac{-3 \cdot 2 + 15 \cdot 1,5}{2} \cdot 16 = 132;$$
 6) $S_{25} = \frac{2 \cdot 121 + 24 \cdot (-3,1)}{2} \cdot 25 = 2095;$

в)
$$S_{40} = \frac{2 \cdot (-2,5) + 39 \cdot (-0,5)}{2} \cdot 40 = -490;$$
 г) $S_{100} = \frac{2 \cdot 4,5 + 99 \cdot 0,4}{2} \cdot 100 = 2430.$

442

$$S_{30} = \frac{a_1 + a_{30}}{2} \cdot 30 = 15(a_1 + a_{30})$$
:

- a) $S_{30}=15(4+3+4\cdot30+3)=1950$;
- б) $S_{30}=15(0,5-3+0,5\cdot30-3)=142,5$;
- B) $S_{30}=15(-2+8-2\cdot30+8)=-690$; Γ) $S_{30}=15(-2,5-6-2,5\cdot30-6)=1342,5$

443.

a_1	d	a_n	n	S_n
7	4	55	13	403
2	2	80	40	1640
56	-3	26	11	451
2	5	87	18	801
9	2	21	7	105

444

$$a_4=10$$
, $a_{10}=19$, $a_{10}-a_4=6d=9$, $d=1,5$, $a_1=a_4-3d=10-3\cdot 1,5=5,5$, $S_{10}=\frac{a_1+a_{10}}{2}\cdot 10=\frac{5,5+19}{2}\cdot 10=122,5$.

445.

a)
$$a_{12} = \frac{a_{11} + a_{13}}{2} = \frac{122}{2} = 61$$
; 6) $a_{18} + a_{20} = 2 \cdot a_{19} = 2 \cdot 5 = 10$;

в)
$$a_6 + a_8 = 2a_7 = 2 \cdot 4 = 8$$
; г) $a_{16} = \frac{a_{15} + a_{17}}{2} = \frac{-2}{2} = -1$.

446.

- a) $a_2+a_{19}=a_1+a_{20}=64$; 6) $a_1+a_{19}=a_3+a_{17}=-40$;
- B) $a_1+a_{16}=a_2+a_{15}=25$; Γ) $a_{10}+a_{16}=a_1+a_{25}=-10$.

$$a_{10} + a_{20} = \frac{a_9 + a_{11}}{2} + \frac{a_{19} + a_{21}}{2} = \frac{44}{2} + \frac{104}{2} = 74.$$

$$a_{15} + a_{30} = \frac{a_{14} + a_{16}}{2} + \frac{a_{29} + a_{31}}{2} = \frac{-20}{2} + \frac{40}{2} = 10.$$

Если х, 2х-1,5х - члены прогрессии, то $\frac{x+5x}{2}$ =2x-1, то есть 3x=2x-1, x=-1.

Если 2у+5, у, 3у-8 - члены прогрессии, то $\frac{2y+5+3y-8}{2}$ =y, 5y-3=2y, y=1.

451.

Если 5t+2, 7t=1, 3t-6 - образуют прогрессию, то $\frac{5t+2+3t-6}{2}$ =7t+1, 4t-2=7t+1, t=-1.

a)
$$a_n = -\frac{n+1}{4}$$
, $a_1 = -\frac{1}{2}$, $d = -\frac{1}{4}$;

6)
$$a_n = \frac{2\sqrt{3} - 5n}{3}$$
, $a_1 = \frac{2\sqrt{3} - 5}{3}$, $d = -\frac{5}{3}$;

в)
$$a_n = \frac{3n-2}{5}$$
, $a_1 = \frac{1}{5}$, $d = \frac{3}{5}$; г) $a_n = \frac{\sqrt{7}n-5}{\sqrt{5}}$, $a_1 = \frac{\sqrt{7}-5}{\sqrt{5}}$, $d = \frac{\sqrt{7}}{\sqrt{5}}$.

a)
$$d_1 = \frac{a_{12} - a_5}{7} = \frac{29 - 15}{7} = 2$$
, $a_1 = a_5 - 4d = 15 - 4 \cdot 2 = 7$,

$$a_n = a_1 + (n-1)d = 7 + (n-1) \cdot 2 = 2n + 5$$

$$\begin{aligned} &a_n = a_1 + (n-1)d = 7 + (n-1) \cdot 2 = 2n + 5; \\ &6) \ d = \frac{a_{19} - a_9}{10} = \frac{-4.5 - (-30)}{10} = -1.5, \ a_1 = a_9 - 8d = -30 - 8(-1.5) = -18, \end{aligned}$$

$$a_n = a_1 + (n-1)d = -18 + (n-1)(-1,5) = -1,5n-16,5$$

B)
$$d = \frac{a_{15} - a_7}{8} = \frac{40 - 20}{8} = 2.5$$
, $a_1 = a_7 - 6d = 20 - 6.2, 5 = 5$,

$$a_n=a_1+(n-1)d=5+(n-1)\cdot 2,5=2,5n+2,5;$$

r)
$$d = \frac{a_{16} - a_5}{11} = \frac{-7.5 - 0.2}{11} = -0.7$$
, $a_1 = a_5 - 4d = -0.2 - 4(-0.7) = 2.6$,

$$a_n=a_1+(n-1)d=2,6+(n-1)(-0,7)=-0,7n+3,3.$$

a)
$$d = \frac{a_9 - a_7}{2} = \frac{8 - (-2)}{2} = 5$$
, $a_8 = \frac{a_7 + a_9}{2} = \frac{8 + (-2)}{2} = 3$;

6)
$$a_8 = \frac{a_9 + a_7}{2} = \frac{4 + (-4)}{2} = 0$$
, $d = a_9 - a_8 = -4$;

B)
$$a_8 = \frac{a_7 + a_9}{2} = \frac{-7 + (-1)}{2} = -4$$
, $d = a_9 - a_8 = -1 - (-4) = 3$;

r)
$$a_8 = \frac{a_7 + a_9}{2} = \frac{-0.9 + (-0.7)}{2} = -0.8$$
, $d = a_8 - a_7 = -0.8 - (-0.7) = -0.1$.

$$a_1$$
=-8, a_4 =-35, тогда $d = \frac{a_4 + a_1}{3} = \frac{-35 - (-8)}{3}$ =-9 и

$$a_2=a_1+d=-17$$
, $a_3=a_4-d=-26$

456.
$$a_n=a_1+(n-1)d$$
:

a)
$$a_7 = -\sqrt{2} + 6 \cdot (1 + \sqrt{2}) = 5\sqrt{2} + 6$$
; 6) $a_{15} = 3 - \sqrt{5} + 14 \cdot 2\sqrt{5} = 27\sqrt{5} + 3$;

в)
$$a_{12} = 9\sqrt{3} - 2 + 11 \cdot (2 - \sqrt{3}) = 20 - 2\sqrt{3}$$
; г) $a_9 = \frac{5\sqrt{3} - 7}{3} - 8 \cdot \frac{\sqrt{3} - 2}{3} = 3 - \sqrt{3}$.

$$n = \frac{a_n - a_1}{d} + 1$$
:

a)
$$n = \frac{6 - \sqrt{3} - 5\sqrt{3}}{1 - \sqrt{3}} + 1 = 7$$
; 6) $n = \frac{13\sqrt{2} - 2 - 5\sqrt{2}}{2\sqrt{2} - 1} + 1 = 8$;

B)
$$n = \frac{13 - 5\sqrt{5} - 5 + \sqrt{5}}{2 - \sqrt{5}} + 1 = 5$$
; r) $n = \frac{1 - \frac{5\sqrt{3} - 7}{3}}{-\frac{\sqrt{3} - 2}{3}} + 1 = 6$.

$$a_1 = a_n - (n-1)d$$
:

a)
$$a_1=10\sqrt{3}$$
 -4-23· $\frac{\sqrt{3}-1}{2}=\frac{15-3\sqrt{3}}{2}$; 6) $a_1=28+27q-27(1+q)=1$;

в)
$$a_1 = 2\sqrt{3} + 5 - 20\frac{\sqrt{3}}{2} = 5 - 8\sqrt{3}$$
; г) $a_1 = 1 - 21(1 - 31) = 64l - 21$.

$$d = \frac{a_n - a_1}{n - 1}$$
:

a)
$$d = \frac{-2\sqrt{3} + 3 - 2\sqrt{3} - 3}{2 \cdot 17} = \frac{2\sqrt{3}}{17}$$
; 6) $d = \frac{m - 5 - 3 + 7m}{8} = m-1$,

в)
$$d = \frac{0 - \sqrt{5} + 1}{5} = \frac{1 - \sqrt{5}}{5}$$
; г) $d = \frac{2p + 3 - 13 + 8p}{10} = p-1$.

a) 13-0,4n=4,6, n=21; б) 5n-104=21, n=25;

в)
$$3n-5,7=69,4$$
, $n=\frac{75,1}{3}$, так что b - не член прогрессии;

г) 21,3-1,7n=4,3, n=10.

461.

а)
$$a_n$$
<-41 при 12-3n<-41, $n > \frac{53}{3}$, $n=18$;

б)
$$a_n$$
<-7 при $3\sqrt{3}$ -n $\sqrt{3}$ <-7, n>3+ $\frac{7}{\sqrt{3}}$, n=8;

в)
$$a_n$$
<-10 при 117-5,5n<10, n< $\frac{107}{5.5}$, n=20;

г)
$$a_n$$
<-1 при 15 $\sqrt{2}$ -n($\sqrt{2}$ -1)<-1, $n>\frac{15\sqrt{2}+1}{\sqrt{2}-1}$, n =49.

(опечатка в ответе задачника)

462.

а)
$$a_n > \sqrt{3}$$
 при 7n-121> $\sqrt{3}$, $n > \frac{121 + \sqrt{3}}{7}$, $n = 18$;

б)
$$a_n > 21$$
 при n $\sqrt{2}$ -4 $\sqrt{2}$ >21, n> $\frac{21 + 4\sqrt{2}}{\sqrt{2}}$, n=19;

в)
$$a_n > 2+3\sqrt{5}$$
 при $5n-17,7 > 2+3\sqrt{5}$, $n > \frac{19,7+3\sqrt{5}}{5}$, $n=6$;

г)
$$a_n > 5$$
 при $n(\sqrt{5}$ -1)-3 $\sqrt{5} > 5$, $n > \frac{5+3\sqrt{5}}{\sqrt{5}-1}$, $n = 10$.

463.

 $a_n = 6n - 306$:

- а) а_n>-12 при 6n-306>-12, n>49, n=50;
- б) $a_n > 0$ при 6n-306 > 0, n > 51, n = 52;
- в) $a_n \ge 0$ при $6n-306 \ge 300$, $n \ge 101$, n=101;
- Γ) $a_n > -6$ при 6n-306 > -6, n > 50, n=51.

464

$$a_1$$
=42, d=-0,5, a_n = a_1 +(n-1)d=42+(n-1)(-0,5)=-0,5n+42,5:

а)
$$a_n > 0$$
 при $-0.5n+42.5>0$, $n<85$, $n=1, 2, ..., 84$;

б)
$$a_n < 0$$
 при $-0.5n + 42.5 < 0$, $n > 85$, $n = 86, 87, ...;$

в)
$$a_n \in (-\infty, 3]$$
 при $-0.5n+42.5 \le 3$, $n \ge 79$, $n = 79, 80, 81...$;

г)
$$a_n \in [-4,5,5,5]$$
 при $-4,5 \le -0,5n + 42,5 \le 5,5$; $-47 \le -0,5n \le -37$; $74 \le n \le 94$, $n = 74,75,\dots,93,94$.

$$\begin{cases} \frac{a_9}{a_2} = 5 \\ \frac{a_{13}}{a_6} = 2 + \frac{5}{a_6} \end{cases} \begin{cases} \frac{a_1 + 8d}{a_1 + d} = 5 \\ \frac{a_{13} - 5}{a_1 + d} = 2 \end{cases} \begin{cases} \frac{a_1 + 8d}{a_1 + d} = 5 \\ \frac{a_1 + 12d - 5}{a_1 + d} = 2 \end{cases}$$

$$\begin{cases} a_1 + 8d = 5a_1 + 5d \\ a_1 + 12d - 5 = 2a_1 + 10d \end{cases} \begin{cases} 4a_1 = 3d \\ a_1 - 2d + 5 = 0 \end{cases} \begin{cases} d = 4 \\ a_1 = 3d \end{cases}$$

466.

$$\begin{cases} a_1 + a_2 + a_3 + a_4 = 16 \\ a_1 - a_3 = 4 \end{cases}, \begin{cases} 4a_1 + 6d = 16 \\ -2d = 4 \end{cases}, \begin{cases} d = -2 \\ a_1 = 7 \end{cases}$$
$$a_1 = 7, a_2 = 5, a_3 = 3, a_4 = 1.$$

Искомое число: 1357.

467

$$\mathbf{a}_7$$
=-100, \mathbf{a}_9 =-78. Тогда $d=\frac{a_9-a_7}{2}=\frac{-78+100}{2}=11$ и \mathbf{a}_{15} = \mathbf{a}_7 +8D=-100+8·11=-12. Далее \mathbf{a}_1 = \mathbf{a}_7 -6·d=-100=6·11=-166, \mathbf{a}_{20} = \mathbf{a}_{15} +5d=-12+5·11=43. Так что \mathbf{S}_{20} = $\frac{a_1+a_{20}}{2}\cdot 20=\frac{-166+43}{2}\cdot 20$ =-1230.

468.

 a_k - число штрафных очков за k-й промах $a_1 \! = \! 1, \, a_2 \! = \! 1, 5, \, a_3 \! = \! 2, \dots$

Известно, что
$$S_n$$
=7, тогда $\frac{2 \cdot a_1 + (n-1)}{2} \cdot n$ =7,

$$n\cdot(2+0.5(n-1))=14$$
,

$$0.5n^2+1.5n-14=0$$
, $n^2+3n-28=0$, $n=4$ (так как $n>0$).

Так что стрелок совершил 4 промаха, а значит попал в цель 21 раз.

469.

а_к - число капель, принятых в k-1 день:

$$a_1{=}5,\,a_2{=}10,\,...$$
 , $a_n{=}40,\,a_{n+1}{=}40,\,a_{n+2}{=}40,\,a_{n+3}{=}40,\,a_{n+4}{=}35,\,a_{n+5}{=}30,\,...$, $a_m{=}5.$

$$n = \frac{a_n - a_1}{5} + 1 = 8.$$

Тогда a_1 =5, a_2 =10, ..., a_8 =40, a_9 =40, a_{10} =40, a_{11} =40, a_{12} =35, a_{13} =30, ..., a_m =5.

$$m=11+\frac{a_m-a_{11}}{-5}$$
, $m=18$.

Тогда общее число капель

 $S=a_1+a_2+...+a_8+3.40+a_{12}+...+a_{18}=$

 $=2(a_1+...+a_7)+4\cdot 40=(a_1+a_7)\cdot 7+4\cdot 40=40\cdot 7+4\cdot 40=440.$

Так что больной надо купить 2 пузырька с каплями.

470.

 a_k - количество сантиметров, пройденное за k-ю минуту. $a_1 = 30, \ a_2 = 35, \ a_3 = 40, \dots$

$$S_n$$
=525, тогда $\frac{2a_1 + (n-1)d}{2} \cdot n$ =525,

 $(60+5(n-1))\cdot n=1050$, $5n^2+55n-1050=0$, $n^2+11n-210=0$, n=10 (так как n>0).

Так что за 10 минут улитка достигнет вершины дерева.

471

 a_k - количество метров, пройденных за k-й день. $a_1 = 1400, \ a_2 = 1300, \ a_3 = 1200, \ \dots$

$$S_n$$
=5000, тогда $\frac{2a_1 + (n-1)d}{2} \cdot n$ =5000,

 $n(2800+(n-1)(-100))=10000, 100n^2-2900n+10000=0,$ $n^2-29n+100=0, n=4 ($ (так как 4<25).

Так что за 4 дня альпинисты покорили высоту.

472.

Пусть a_k - количество у.е., заплаченных за k-е кольцо, тогда: $a_1 \!\!=\!\! 26,\, a_2 \!\!=\!\! 24,\, a_3 \!\!=\!\! 22,\, ...$

Общая сумма S=S_n+40= $\frac{2a_1+(n-1)d}{2}$ ·n+40=n(26-(n-1))+40=40+24n-

По условию
$$\frac{S}{n} = 22\frac{4}{9}$$
, $\frac{40 + 27n - n^2}{n} = 22\frac{4}{9}$, $9n^2 - 243n - 360 = -202n$,

 $9n^2$ -243n-360=-202n, $9n^2$ -41n-360=0, n=9 (так как n>0). Так что было установлено 9 колец.

473.

Если x-4, $\sqrt{x-3}$, x-6 образуют арифметическую прогрессию, то

$$\frac{x-4+x-6}{2} = \sqrt{x-3}, x-5 = \sqrt{x-3}, x^2-10x+25 = x-3, x^2-11x+28 = 0,$$

x=4 и x=7, но x-5>0, так что x=7.

Если $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ образуют прогрессию, то

a)
$$\frac{\frac{1}{a} + \frac{1}{c}}{2} = \frac{1}{b}$$
, $\frac{a+c}{2ac} = \frac{1}{b}$, ab+bc=2ac, ab+bc+ac;

б) ab+bc=2ac|:ac, $\frac{b}{c} + \frac{b}{a} = 2$. Что и требовалось доказать.

Если $\frac{1}{a+b}$, $\frac{1}{a+c}$, $\frac{1}{c+b}$ - образуют арифметическую прогрессию,

To
$$\frac{\frac{1}{a+b} + \frac{1}{c+b}}{2} = \frac{1}{a+c}$$
, $\frac{c+b+a+b}{2(a+b)(c+b)} = \frac{1}{a+c}$, $\frac{c+b+a+b}{2(a+b)(c+b)} = \frac{1}{a+c}$,

(2b+a+c)(a+c)=2(a+b)(b+c), $2ab+a^2+ac+2bc+ac+c^2=2ab+2ac+2b^2+2bc$

то есть $\frac{a^2+c^2}{2}$ = b^2 , так что a^2 , b^2 , c^2 - также образуют прогрессию, что и требовалось доказать.

§ 19. Геометрическая прогрессия

6)
$$b_1=-2$$
, $b_2=1$, $b_3=-\frac{1}{2}$, $b_4=\frac{1}{4}$, $b_5=-\frac{1}{8}$, $b_6=\frac{1}{16}$;

B)
$$b_1=-1$$
, $b_2=3$, $b_3=-9$, $b_4=27$, $b_5=-81$, $b_6=243$

B)
$$b_1$$
=-1, b_2 =3, b_3 =-9, b_4 =27, b_5 =-81, b_6 =243;
r) b_1 =20, b_2 =20 $\sqrt{5}$, b_3 =100, b_4 =100 $\sqrt{5}$, b_5 =500, b_6 =500 $\sqrt{5}$.

$$b_1=3$$
, $b_2=3^2=9$, $b_3=3^3=27$, ...

Это геометрическая прогрессия со знаменателем q=3.

$$b_1 = \frac{1}{10}$$
, $b_2 = \frac{1}{100}$, $b_3 = \frac{1}{1000}$, ...

Это геометрическая прогрессия со знаменателем $q = \frac{1}{10}$.

а), в) и г).

480.

а), в) и г).

а) и г) - возрастающие, в) - убывающая.

а) - возрастающая, б) - убывающая..

a)
$$q = \frac{1}{\sqrt{2}}$$
; б) $q = \frac{3}{4}$; в) $q = \frac{1}{3}$; г) $q = \frac{7}{2}$.

484. a) q=b₃:b₂=(-32):8=-4; b₁=b₂;q=-2;

б)
$$q=b_5:b_4=(-\frac{1}{2}):1=-\frac{1}{2}$$
; $b_1=b_4;q^3=1:(-\frac{1}{2})^3=-8$;

B)
$$q=b_3:b_2=\frac{3}{4}:\frac{3}{2}=\frac{1}{2}$$
; $b_1=b_2;q=3$;

r)
$$q=b_6:b_5=3:6=\frac{1}{2}$$
; $b_1=b_5;q^4=6:(\frac{1}{2})^4=96$.

a)
$$b_4 = b_1 \cdot q^3 = -2 \cdot (-\frac{3}{2})^3 = \frac{27}{4}$$
; 6) $b_5 = b_1 \cdot q^4 = \sqrt{6} \cdot (\sqrt{2})^4 = 4\sqrt{6}$;

B)
$$b_4 = b_1 \cdot q^3 = 3 \cdot (-\frac{3}{4})^3 = -\frac{81}{64}$$
; Γ) $b_6 = b_1 \cdot q^5 = 5\sqrt{5} \cdot (5^{-\frac{1}{2}})^5 = 5^{-1} = \frac{1}{5}$

a)
$$b_n=5^{n-1}$$
, $b_n=b_1\cdot q^{n-1}$, $b_1=1$, $q=5$;

б)
$$b_n = \frac{3}{5} \cdot 2^n$$
, $b_n = \frac{6}{5} \cdot 2^{n-1}$, $b_1 = \frac{6}{5}$, $q=2$;

$${}_{B})\;b_{n}\!=\!\frac{\sqrt{3}}{2}\cdot\!(\frac{1}{4}\,)^{n\text{-}1},\,b_{l}\!=\!\frac{\sqrt{3}}{2}\,,\,q\!=\!\frac{1}{4}\,;$$

$$\text{r) } b_n \!\!=\!\! \frac{5}{2^{n+1}} \,, \, b_n \!\!=\! \frac{5}{4} \, (\frac{1}{2}\,)^{n\!\!-\!1} \!, \, b_1 \!\!=\! \frac{5}{4} \,, \, q \!\!=\! \frac{1}{2} \,.$$

 b_1 =18, b_3 =2, тогда b_2^2 = $b_1 \cdot b_3$ =36 и так как b_2 >0 (по условию), то b_2 =6. То есть 18, 6, 2.

а) $b_n = 5 \cdot 2^{n-1}$, $640 = 5 \cdot 2^{n-1}$, $2^{n-1} = 128$, n = 7, так что A = 640 - член

б)
$$b_n$$
=- $\frac{7}{5}$ ($\sqrt{3}$)ⁿ, -37,8=- $\frac{7}{5}$ ($\sqrt{3}$)ⁿ, ($\sqrt{3}$)ⁿ=27, n=6, так что A=-37,8 -

член прогрессии;

в) b_n =-2· $5^{\frac{n}{2}}$, -1250=-2· $5^{\frac{n}{2}}$, $5^{\frac{n}{2}}$ =625, n=8, так что A= b_8 - член прогрессии;

г)
$$b_n=3,5(\frac{1}{\sqrt{2}})^{n+3}$$
, -0,218=3,5· $(\frac{1}{\sqrt{2}})^{n+3}$, $(-\sqrt{2})^{-n-3}=\frac{0,436}{7}$, n - не

является натуральным числом, так что А - не член прогрессии.

а) $b_n=4.3^{n-1}$, $b_n>324$ при $4.3^{n-1}>324$, $3^{n-1}>81$, n>5, n=6;

б)
$$b_n=3,5\cdot(\sqrt{2})^{n-2}$$
, $b_n>14$ при $3,5\cdot(\sqrt{2})^{n-2}>14$, $(\sqrt{2})^{n-2}>4$, $n>6$, $n=7$;

в)
$$b_n \!\!=\!\! 2 \cdot 5^{n\text{--}1}, \, b_4 \!\!>\!\! 253$$
 при $2 \cdot 5^{n\text{--}1} \!\!>\!\! 253, \, 5^{n\text{--}1} \!\!>\!\! \frac{253}{2}$, $n \!\!=\!\! 5;$

г)
$$b_n = \frac{2}{5} \left(\sqrt{3}\right)^{n+3}$$
, $b_n > 84$ при $\frac{2}{5} \left(\sqrt{3}\right)^{n+3} > 210$, $n = 7$.

a)
$$b_n = 3 \cdot 2^{n-1}$$
; 6) $b_n = -2.5 \cdot (\frac{1}{\sqrt{2}})^{n-1}$; b) $b_n = 2.5 \cdot (-0.2)^{n-1}$; Γ) $b_n = 3\sqrt{3} \cdot (\frac{1}{3})^{n-1}$.

a)
$$b_n=8\cdot(\frac{1}{2})^{n-1}$$
; 6) $b_n=-\frac{1}{4}\cdot(-\frac{1}{4})^{n-1}=(-\frac{1}{4})^n$;

в)
$$b_n = 4 \cdot (\frac{1}{4})^{n-1}$$
; г) $b_n = \sqrt{2} \cdot (\sqrt{2})^{n-1} = (\sqrt{2})^n$.

- a) $b_5 = b_1 \cdot q^4$;
- б) $b_{41} = b_1 \cdot q^4$
- B) $b_k = b_1 \cdot q^{k-1}$
- г) $b_{2n} = b_1 \cdot q^{2n-1}$

a)
$$b_4 = b_1 \cdot q^3 = 128 \cdot (-\frac{1}{2})^3 = -16$$

a)
$$b_4 = b_1 \cdot q^3 = 128 \cdot (-\frac{1}{2})^3 = -16;$$
 6) $b_5 = b_1 \cdot q^4 = 270 \cdot (\frac{1}{3})^4 = \frac{10}{3};$

B)
$$b_8 = b_1 \cdot q^7 = \frac{1}{5} \cdot (\sqrt{5})^7 = 25\sqrt{5}$$
; r) $b_6 = b_1 \cdot q^5 = 625 \cdot (-\frac{1}{5})^5 = -\frac{1}{5}$

$$\mathbf{r}) b_6 = b_1 \cdot q^5 = 625 \cdot \left(-\frac{1}{5}\right)^5 = -\frac{1}{5}.$$

 $b_n = b_1 \cdot q^{n-1}$:

a) $b_{10} = b_1 \cdot q^9 = 1 \cdot 3^9 = 3^9$; 6) $b_6 = b_1 \cdot q^5 = \frac{1}{2} \cdot (-\frac{1}{3})^5 = -\frac{1}{486}$;

B) $b_5 = b_1 \cdot q^4 = 8 \cdot \frac{1}{2} = \frac{1}{2}$; r) $b_5 = b_1 \cdot q^4 = 2, 5 \cdot (1,5)^4 = \frac{405}{32}$

a) $\frac{1}{729} = \frac{1}{3} \cdot (\frac{1}{3})^{n-1}, \frac{1}{729} = (\frac{1}{3})^n, n=6;$

6) $2=256\cdot(\frac{1}{2})^{n-1}, (\frac{1}{2})^{n-1}=\frac{1}{128}, n=8;$

B) $4.10^{-3} = 2.5 \cdot (\frac{1}{5})^{n-1}, \frac{1}{625} = (\frac{1}{5})^{n-1}, n=5;$

r) $-2401 = \frac{1}{343} \cdot (-7)^{n-1}$, $(-7)^{n-1} = -823543$, n=8.

496. a) b_n=3ⁿ⁻¹, 3ⁿ⁻¹<729 при n≤7, n=1, 2, ..., 6, 7;

б) $b_n=3\cdot(\frac{1}{2})^{n-1}$, $3(\frac{1}{2})^{n-1}<0.003$ при $(\frac{1}{2})^{n-1}<0.001$, n>10, n=11,12,13...;

в) $b_n = 243 \cdot (\frac{1}{3})^{n-1}$, $243(\frac{1}{3})^{n-1} < 0.1$ при $(\frac{1}{3})^{n-1} < \frac{0.1}{243}$, n > 8, n = 9, 10, $11 \dots$;

г) $b_n=16\cdot(\frac{1}{\sqrt{2}})^{n-1}$, $16(\frac{1}{\sqrt{2}})^{n-1}<1$ при $(\frac{1}{\sqrt{2}})^{n-1}<\frac{1}{2^4}$, n>9, n=10, 11...

а) $q^2 = \frac{b_7}{b_-} = \frac{192}{48} = 4$, q>0, так что q=2 и $b_1 = b_5$: $q^4 = 48$:16 = 3;

б) $q^3 = b_5: b_2 = \frac{81}{24} = \frac{27}{8}$, $q = \frac{3}{2}$ и $b_1 = b_2: q = 24: \frac{3}{2} = 16$;

в) $q^3 = b_6:b_3 = -\frac{13}{32}:\frac{13}{4} = -\frac{1}{8}, q = -\frac{1}{2}, b_1 = b_3:q^2 = \frac{13}{4}:\frac{1}{4} = 13;$

г) $q^2 = b_5: b_3 = 48: 12 = 4$, q < 0, так что q = -2 и $b_1 = b_3: q^2 = 12: 4 = 3$.

 $b_1 = 1, \, b_4 = \frac{1}{8}$, тогда $q = \sqrt[3]{b_4 \cdot b_1} = \frac{1}{2}$ и $b_2 = \frac{1}{2}$, $b_3 = \frac{1}{4}$. То есть $1, \, \frac{1}{2}, \, \frac{1}{4}, \, \frac{1}{8}$.

P_k - периметр k-го вписанного треугольника

$$P_1=3.32=96, P_2=3.\frac{32}{2}=48, P_3=24, ...$$

Так что $P_1,\,P_2,\,P_3\,...$ - геометрическая прогрессия.

$$P_n = 96 \cdot (\frac{1}{2})^{n-1}$$

500.

$$S_n = \frac{b_1(q^n - 1)}{q - 1}$$
:

a)
$$S_4 = \frac{1(2^4 - 1)}{2 - 1} = 15$$
; 6) $S_4 = \frac{3(4^4 - 1)}{4 - 1} = 255$;

$$\text{B) } S_4 \! = \! \frac{1((\frac{1}{3})^4 - 1)}{\frac{1}{3} - 1} = \! \frac{3}{2} \cdot \frac{80}{81} = \! \frac{40}{27}; \, \Gamma) \; S_4 \! = \! \frac{4 \cdot ((-\frac{1}{2})^4 - 1)}{-\frac{1}{2} - 1} = \! \frac{4 \cdot 2 \cdot 15}{3 \cdot 16} = \! \frac{5}{2} \; .$$

501.

a)
$$S_6 = \frac{18 \cdot ((\frac{1}{3})^6 - 1)}{\frac{1}{3} - 1} = \frac{18 \cdot 3 \cdot 728}{2 \cdot 729} = \frac{728}{27}$$
;

6)
$$S_6 = \frac{15 \cdot ((\frac{2}{3})^6 - 1)}{\frac{2}{3} - 1} = \frac{15 \cdot 3 \cdot 665}{729} = \frac{3325}{81};$$

B)
$$S_6 = \frac{-12 \cdot ((-\frac{1}{2})^6 - 1)}{-\frac{1}{2} - 1} = -\frac{12 \cdot 2 \cdot 63}{3 \cdot 64} = -\frac{63}{8}$$
;

r)
$$S_6 = \frac{-9 \cdot ((\sqrt{3})^6 - 1)}{\sqrt{3} - 1} = \frac{234}{\sqrt{3} - 1}$$
.

a)
$$S_6 = \frac{5(2^6 - 1)}{2 - 1} = 315$$
; 6) $S_8 = \frac{-1((-1, 5)^8 - 1)}{-1, 5 - 1} = \frac{1261}{128}$;

в)
$$S_{13} = \frac{-4((\frac{1}{2})^{13} - 1)}{\frac{1}{2} - 1} = -\frac{8191}{1024}$$
; г) $S_8 = \frac{4,5((\frac{1}{3})^8 - 1)}{\frac{1}{3} - 1} = \frac{1640}{243}$.

a)
$$b_1=3$$
, $q=2$, $S_5=\frac{3(2^5-1)}{2-1}=93$;

б)
$$b_1=-1$$
, $q=-2$, $S_5=\frac{-1((-2)^5-1)}{-2-1}=-11$;

B)
$$b_1$$
=-3, $q = \frac{1}{2}$, $S_5 = \frac{-3((\frac{1}{2})^5 - 1)}{\frac{1}{2} - 1} = -\frac{93}{16}$;

r)
$$b_1 = \sqrt{2}$$
, $q=3$, $S_5 = \frac{\sqrt{2}(3^5 - 1)}{3 - 1} = 121\sqrt{2}$.

504

a)
$$q=b_5$$
: $b_4=320$: $160=2$, $b_1=b_4$: $q^3=160$: $8=20$, $S_5=\frac{20(2^5-1)}{2-1}=620$;

6)
$$q = \sqrt{b_9 : b_7} = \sqrt{16.8} = \sqrt{2}$$
, $b_1 = b_7 : q^6 = 8:2^3 = 1$,

$$S_5 = \frac{1((\sqrt{2})^5 - 1)}{\sqrt{2} - 1} = (4\sqrt{2} - 1)(\sqrt{2} + 1) = 7 + 3\sqrt{2}$$
; опечатка в ответе

задачника

B)
$$q = \sqrt{b_5 : b_3} = \sqrt{\frac{1}{9} : 1} = \frac{1}{3}$$
, $b_1 = b_3 : q^2 = 1 : (\frac{1}{3})^2 = 9$,

$$S_5 = \frac{9 \cdot ((\frac{1}{3})^5 - 1)}{\frac{1}{3} - 1} = \frac{9 \cdot 3 \cdot 242}{2 \cdot 243} = \frac{121}{9};$$

r)
$$q = \sqrt[3]{b_7 : b_4} = \sqrt[3]{\frac{9\sqrt{3}}{3}} = \sqrt{3\sqrt{3}} = \sqrt{3}$$
, $b_1 = b_4 : q^3 = 3\sqrt{3} : 3\sqrt{3} = 1$,

$$S_5 = \frac{1((\sqrt{3})^5 - 1)}{\sqrt{3} - 1} = \frac{(9\sqrt{3} - 1)(\sqrt{3} + 1)}{2} = 13 + 4\sqrt{3} \ .$$

b_1	q	n	b _n	S_n
15	$\frac{1}{3}$	3	$1\frac{2}{3}$	$21\frac{2}{3}$
$16-3\sqrt{23}$	$\frac{9+3\sqrt{23}}{7}$	3	18	25

$\frac{1}{3}$	$1\frac{1}{2}$	6	$2\frac{17}{32}$	$6\frac{89}{96}$
$\sqrt{3}$	$\sqrt{3}$	4	9	$4(3+\sqrt{3})$
15	$\frac{1}{3}$	6	<u>5</u> 81	$22\frac{38}{81}$

b ₁	q	n	b _n	S _n
15	13	4	$\frac{39}{25}$	10476
$\frac{15}{169}$	5		25	4225
$2\sqrt{6}$	1	4	1	$7(\sqrt{6}+1)$
	$\sqrt{6}$		3	3

a)
$$b_4 = \sqrt{b_3 \cdot b_5} = \sqrt{36 \cdot 49} = 42$$
; 6) $b_4 = -\sqrt{b_3 \cdot b_5} = -\sqrt{36 \cdot 49} = -42$;

в)
$$b_8 = \sqrt{b_7 \cdot b_9} = \sqrt{16 \cdot 25} = 20$$
; г) $b_8 = -\sqrt{b_7 \cdot b_9} = -\sqrt{16 \cdot 25} = -20$.

507

a)
$$b_3 = \sqrt{b_4 \cdot b_2} = \sqrt{16 \cdot 4} = 8$$
; $q = b_3 : b_2 = 8 : 4 = 2$;

6)
$$b_6 = -\sqrt{b_5 \cdot b_7} = -\sqrt{3 \cdot 12} = -6$$
; $q = b_6 : b_5 = -6 : 12 = -\frac{1}{2}$;

в)
$$b_{26}$$
=- $\sqrt{b_{25} \cdot b_{27}}$ =- $\sqrt{7 \cdot 21}$ =-7 $\sqrt{3}$; q = b_{26} : b_{25} =- $\sqrt{3}$;

г)
$$b_7 = \sqrt{b_6 \cdot b_8} = \sqrt{15 \cdot 5} = 5 \sqrt{3}$$
 ; $q = b_8 : b_7 = 5 : 5 \sqrt{3} = \frac{\sqrt{3}}{3}$. опечатка в ответе задачника.

508.

Если t, 4t, 8 - члены прогрессии, то

$$t \cdot 8 = (4t)^2$$
, так что $t = \frac{1}{2}$.

509.

Если -81, 3у, -1 - члены прогрессии, то $(-81)\cdot(-1)=(3y)^2$, откуда $y=\pm 3$.

510

Если х-1, $\sqrt{3x}$, 6х - члены прогрессии, то

$$(x-1)6x=(\sqrt{3x})^2, (x-1)\cdot 6=3, x=\frac{3}{2}.$$

a)
$$b_1 = \frac{6}{5}$$
, q=3; б) $b_1 = 0,3$, q= $\left(-\frac{1}{5}\right)$;

в)
$$b_1 = \frac{5}{2}$$
, $q = \frac{1}{2}$; r) $b_1 = -\frac{4}{7}$, $q = 2$.

 $b_1\!\!=\!\!4,\,b_3\!\!+\!b_5\!\!=\!\!80,\,q\!\!>\!\!1,$ тогда $b_3\!\!+\!b_5\!\!=\!\!b_1(q^2\!\!+\!q^4)\!\!=\!\!80,$ то есть $q^2\!\!+\!q^4\!\!=\!\!20,$ так что $q\!\!=\!\!2$ и $b_{10}\!\!=\!\!b_1\!\!\cdot\!q^9\!\!=\!\!4\!\cdot\!2^9\!\!=\!\!2^{11}\!\!=\!\!2048.$

513

 b_1 =1, b_5 =81, тогда q^4 = b_5 · b_1 =81, q=±3, так что b_2 =±3, b_3 =9, b_4 =±2·7. То есть 1, 3, 9, 27, 81 или 1, -3, 9, -27, 81.

514.

$$\begin{cases} b_2 - b_3 = 18 \\ b_2 + b_3 = 54 \end{cases}$$
, тогда b₂=36, b₃=18, q=b₃:b₂= $\frac{1}{2}$ и b₁=b₂:q=72.

515.

$$\begin{cases} b_1 + b_2 + b_3 = 14 \\ b_4 + b_5 + b_6 = 112 \end{cases}, \begin{cases} b_1(1+q+q^2) = 14 \\ b_1q^3(1+q+q^2) = 112 \end{cases}, q^3 = 8, q = 2, b_1 = 2.$$

Так что прогрессия: 2, 4, 8, 16, 32, 64.

516

$$\begin{cases} b_1 \cdot b_2 \cdot b_3 = 216 \\ \sqrt{b_1^2 + b_2^2 + b_3^2} = \sqrt{364} \end{cases}, \, b_1 {>} 0, \, b_2 {>} 0, \, b_3 {>} 0.$$

Тогда
$$\begin{cases} b_1^3 q^3 = 216 \\ b_1 \sqrt{1 + q^2 + q^4} = \sqrt{364} \end{cases}, \begin{cases} b_1 \cdot q = 6 \\ b_1 \sqrt{1 + q^2 + q^4} = 2\sqrt{91} \end{cases},$$

517

$$S_6^* = b_1^2 + b_2^2 + \dots + b_6^2 = b_1^2 (1 + q^2 + q^4 + q^6 + q^8 + q^{10}) = \frac{b_1^2 (q^{12} - 1)}{a^2 - 1}$$
:

a)
$$S_6^* = \frac{9(64-1)}{1} = 567$$
; 6) $S_6^* = \frac{5(46656-1)}{5} = 46655$;

B)
$$S_6^* = \frac{243(\frac{1}{729} - 1)}{\frac{1}{3} - 1} = \frac{729 \cdot 728}{2 \cdot 729} = 364;$$

r)
$$S_6^* = \frac{12(\frac{1}{64} - 1)}{\frac{1}{2} - 1} = \frac{24 \cdot 63}{64} = \frac{189}{8}$$
.

$$S_n = \frac{b_1(q^n - 1)}{q - 1}, q^n = \frac{S_n(q - 1)}{b_1} + 1$$
:

a)
$$3^n = \frac{200(3-1)}{5} + 1$$
, $3^n = 81$, $n = 4$;

6)
$$\left(\frac{1}{2}\right)^n = \frac{-127 \cdot \left(\frac{1}{2} - 1\right)}{64 \cdot (-1)} + 1$$
, $\left(\frac{1}{2}\right)^n = \frac{1}{128}$, $n = 7$;

B)
$$2^n = \frac{189 \cdot (2-1)}{3} + 1$$
, $2^n = 64$, $n = 6$;

r)
$$\left(\frac{1}{3}\right)^n = \frac{121 \cdot \left(\frac{1}{3} - 1\right)}{27 \cdot 3} + 1$$
, $\left(\frac{1}{3}\right)^n = \frac{1}{243}$, n=5.

519.

a)
$$1+2+2^2+...+2^8=S_9=\frac{b_1(q^9-1)}{q-1}=\frac{1\cdot((2^9-1))}{2-1}=511;$$

6)
$$1 - \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^{10}} = S_{11} = \frac{b_1(q^{11} - 1)}{q - 1} = \frac{1 \cdot (-\frac{1}{2})^{11} - 1)}{-\frac{1}{2} - 1} = \frac{2049 \cdot 2}{3 \cdot 2048} = \frac{683}{1024};$$

B)
$$\frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^6} = S_6 = \frac{b_1(q^6 - 1)}{q - 1} = \frac{1 \cdot ((\frac{1}{3})^6 - 1)}{3(\frac{1}{3} - 1)} = \frac{728 \cdot 3}{3 \cdot 729 \cdot 2} = \frac{364}{729}$$
;

$$\Gamma) \ 1-3+3^2-3^3+\dots-3^9=S_{10}=\frac{b_1(q^{10}-1)}{q-1}=\frac{1\cdot((-3)^{10}-1)}{-3-1}=\frac{3^{10}-1}{-4}=-14762.$$

a)
$$1+x+x^2+...+x^{100}=S_{101}=\frac{b_1(q^{101}-1)}{q-1}=\frac{1(x^{101}-1)}{x-1}=\frac{x^{101}-1}{x-1}$$
;

6)
$$x+x^3+x^5+...+x^{35}=S_{18}=\frac{b_1(q^{18}-1)}{q-1}=\frac{x(x^{36}-1)}{x^2-1}$$
;

B)
$$x^2-x^4+x^6-...-x^{20}=S_{10}=\frac{b_1(q^{10}-1)}{q-1}=\frac{x^2(x^{20}-1)}{-x^2-1}=\frac{x^2(1-x^{20})}{1+x^2}$$
;

$$\Gamma) \frac{1}{x} + \frac{1}{x^2} + \dots + \frac{1}{x^{40}} = S_{40} = \frac{b_1(q^{40} - 1)}{q - 1} = \frac{1((\frac{1}{x})^{40} - 1)}{x \cdot (\frac{1}{x} - 1)} = \frac{1 - x^{40}}{x^{40}(1 - x)}.$$

а)
$$1+x+x^2+x^3=S_4=\frac{b_1(q^4-1)}{q-1}=\frac{1(x^4-1)}{x-1}=\frac{x^4-1}{x-1}$$
, ч.т.д.;

б)
$$1+x+x^4+x^6=S_4=\frac{b_1(q^4-1)}{q-1}=\frac{1(x^8-1)}{x^2-1}=\frac{x^8-1}{x^2-1}$$
 , ч.т.д.;

в)
$$1-x+x^2-x^3=S_4=\frac{b_1(q^4-1)}{q-1}=\frac{1((-x)^4-1)}{-x-1}=\frac{1-x^4}{1+x}$$
, ч.т.д.;

г) 1-
$$x^2$$
+ x^4 - x^6 = S_4 = $\frac{b_1(q^4-1)}{q-1}$ = $\frac{1((-x^2)^4-1)}{-x^2-1}$ = $\frac{1-x^8}{x^2+1}$, ч.т.д.;

522.

а)
$$(x-1)(x^4+x^3+x^2+x+1)=(x-1)\cdot S_5=(x-1)\cdot \frac{1(x^5-1)}{x-1}=x^5-1$$
, ч.т.д.;

б)
$$(x+1)(x^4-x^3+x^2-x+1)=(x+1)\cdot S_5=(x+1)\cdot \frac{1\cdot ((-x^5)-1)}{-x-1}=x^5+1$$
, ч.т.д.;

B)
$$(x^2+1)(x^6-x^4+x^2-1)=(x^2+1)\cdot S_4=(x^2+1)\cdot \frac{-1((-x^2)^4-1)}{-x^2-1}=x^8-1$$
,

значит утверждение $x^8+1=(x^2+1)(x^6-x^4+x^2-1)$ - неверно.

$$\Gamma$$
)) $(1-x^2)(x^4+x^2+1)=(1-x^2)\cdot S_3=(1-x^2)\cdot \frac{1((x^2)^3-1)}{x^2-1}=1-x^6$, ч.т.д.;

523

Дана прогрессия $b, b_2, ..., b_{2n}$.

Тогда
$$\frac{b_2 + b_4 + \dots + b_{2n}}{b_1 + b_3 + \dots + b_{2n-1}} = \frac{q(b_1 + \dots + b_{2n-1})}{b_1 + \dots + b_{2n-1}} = q$$
, ч.т.д.;

524.

b_k - число бактерий после 20·k-минут

$$b_1 = 1$$
, $b_2 = 2$, $b_3 = 4$,..., $b_k = 2^{k-1}$

Тогда в сутках $20 \cdot 3 \cdot 24$ - минут, то есть $20 \cdot k$,

где k=72 и
$$S_k = \frac{b_1(q^k - 1)}{q - 1} = \frac{1 \cdot (2^{72} - 1)}{2 - 1} = 2^{72} - 1.$$

 b_k - количество денег, отданных богачом в k-й день (копеек).

Тогда b_1 =1, b_2 =2, b_3 =4,... b_{30} =2²⁹.

Тогда богач отдал
$$S_{30} = \frac{b_1(q^{30}-1)}{q-1} = \frac{1\cdot(2^{30}-1)}{2-1} = 2^{30}-1$$
 копеек

≈1070000000 коп.≈10 млн. руб.

А получил богач $S=30\cdot100000=3000000=3$ млн. руб.

Так что богач проиграл.

526.

 $b_1, \, ... \, , \, b_n$ - геометрическая прогрессия.

Тогда $b_k \cdot b_{n-k+1} = (b_1 \cdot q^{k-1}) \cdot (b_n \cdot q^{n-(n-k+1)}) = b_1 \cdot b_n$ - что и требовалось доказать.

527.

 b_1, b_2, b_3 - геометрическая прогрессия.

 b_1 =9, b_1 b_2 , b_3 -16 - арифметическая прогрессия.

Тогда
$$b_1 \cdot b_3 = b_2^2$$
 , то есть $9b_3 = b_2^2$ и $\frac{b_1 + b_9 - 16}{2} = b_2$, то есть $b_2 = \frac{b_3 - 7}{2}$.

Так что
$$9b_3 = (\frac{b_3 - 7}{2})^2$$
, $36b_3 = b_3^2 - 14b_3 + 49$,

$$b_3^2$$
 -50 b_3 +49=0, b_3 =1 или b_3 =49.

Тогда b_2 =-3 или b_2 =21.

528

 $a_1+a_2+a_3=24$, a_1 , a_2 , a_3 - арифметическая прогрессия.

 a_1, a_2+1, a_3+14 - геометрическая прогрессия.

Тогда поскольку $a_1+a_3=2a_2$, то $3a_2=24$, $a_2=8$.

Далее, $a_1+a_3=16$ и $a_1(a_3+14)=(a_2+1)^2=81$.

$$\begin{cases} a_1 + a_3 = 16 \\ a_1(a_3 + 14) = 81 \end{cases} \begin{cases} a_1 = 16 - a_3 \\ (16 - a_3)(a_3 + 14) = 81 \end{cases} \begin{cases} a_1 = 16 - a_3 \\ a_3^2 - 2a_3 - 143 = 0 \end{cases}$$

$$\begin{cases} a_1 = 16 - a_3 \\ a_3 = 13 \text{ или } a_3 = -11 \end{cases}, \begin{cases} a_3 = 13 \\ a_1 = 3 \end{cases}, \begin{cases} a_3 = -11 \\ a_1 = 27 \end{cases}.$$

Так что 27, 8, -11 или 3, 8, 13.

529.

 $b_1, b_2, b_3, ...$ - геометрическая прогрессия.

 $b_1 + b_2 + b_3 = 91$, $b_1 + 25$, $b_2 + 27$, $b_3 + 1$ - арифметическая прогрессия.

Тогда $b_1+25+b_3+1=2(b_2+27)$, причем $b_1+25>b_2+27>b_3+1$.

Тогда $3b_2+28=91$, $b_2=21$.

Так что $b_1+b_3=70$ и $b_1b_3=b_2^2=441$, так что $b_1=7$, $b_3=63$ или $b_2=7$, $b_1=63$.

Так как $b_1+25>b_3+1$, то $b_1=63$, а $b_3=7$.

Тогда $q=b_2:b_1=\frac{1}{3}$. и $b_7=b_1\cdot q^6=63\cdot \frac{1}{3^6}=\frac{7}{81}$.

 b_1, b_2, b_3 - геометрическая прогрессия.

 $b_1 \!\!=\!\! a_1,\, b_2 \!\!=\!\! a_2,\, b_3 \!\!=\!\! a_7,$ где $a_1,\, a_2,\, \dots$, a_7 - арифметическая прогрессия.

 $b_1+b_2+b_3=31$. Тогда $b_1(1+q+q^2)=31$.

 $d=a_2-a_1=b_2-b_1$, $a_7=a_1+6d$, то есть

$$b_3=b_1+6(b_2-b_1), b_3=6b_2-5b_1, b_1(5-6q+q^2)=0.$$
 Тогда $5-6q+q^2=0, q=1$ или $q=5.$ Тогда $b_1=\frac{31}{1+q+q^2}, b_1=\frac{31}{3}$ или $b_1=1.$

Тогда
$$b_2 = b_3 = \frac{31}{3}$$
 или $b_2 = 5$, $b_3 = 25$.

Ответ: 1, 5, 25 или
$$\frac{31}{3}$$
 , $\frac{31}{3}$, $\frac{31}{3}$.

Глава 5. Элементы теории тригонометрических функций

§ 21. Числовая окружность.

531.

Смотри рис. 1:

а) точка A; б) точка B; в) точка C; Γ) точка D.

532

Смотри рис. 2:

а) точка А; б) точка В; в) точка С; г) точка D.

533.

Смотри рис. 3:

а) точка A; б) точка B; в) точка C; Γ) точка D.

534.

Смотри рис. 4:

а) точка А; б) точка В; в) точка С; г) точка D.

535.

Смотри рис. 5:

а) точка А; б) точка В; в) точка С; г) точка D.

536.

Смотри рис. 6:

а) точка А; б) точка В; в) точка С; г) точка D.

537.

Смотри рис. 7:

а) точка А; б) точка В; в) точка С; г) точка D.

538

Смотри рис. 8:

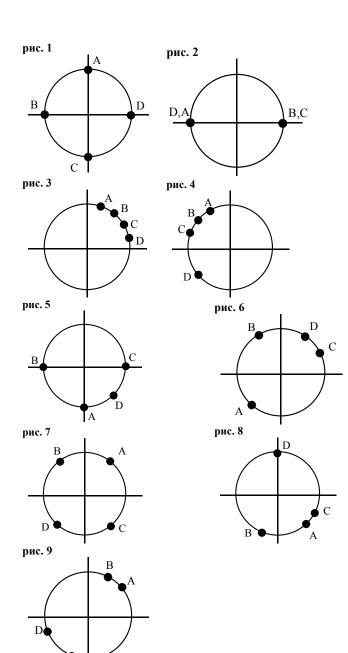
а) точка А; б) точка В; в) точка С; г) точка D.

539

Смотри рис. 9:

а) точка A; б) точка B; в) точка C; Γ) точка D.

a)
$$\frac{3\pi}{4}$$
; б) $\frac{2\pi}{3}$; в) $\frac{7\pi}{12}$; г) $\frac{5\pi}{6}$.



- a) Длина $AM = \frac{3\pi}{4}$;
- б) Длина $BK = \frac{2\pi}{3}$;
- в) Длина $MP = \frac{7\pi}{12}$;
- Γ) Длина $KA = \frac{5\pi}{6}$.

541.

- а) Длина $AM = \frac{\pi}{4}$;
- б) Длина $CK = \frac{2\pi}{3}$;
- в) Длина $MP = \frac{19\pi}{12}$;
- г) Длина $PC = \frac{7\pi}{6}$.

542.

- а) Нет, не совпадают, так как $12\frac{1}{3}\pi \neq \frac{31\pi}{3} + 2\pi n$,
- п целое.
- б) Нет, не совпадают, так как $8\frac{1}{6}\pi \neq \frac{19\pi}{6} + 2\pi n$, $n \in Z$.
- в) Да, совпадают, так как $12\frac{1}{4}\pi = \frac{9}{4}\pi + 10\pi$.
- г) Нет, не совпадают., так как $19\frac{3}{4}\pi \neq 6{,}75\pi + 2\pi n$

543.

- а) Симметрично относительно OX (диаметра, проходящего через точку O).
- б) Совпадают.
- в) Симметрично относительно центра.
- г) Совпадают.

- a) $\frac{\pi}{4} + 2\pi r$, $r \in \mathbb{Z}$.
- 6) $5 + 2\pi n$, $n \in \mathbb{Z}$.

B)
$$\frac{3\pi}{4} + 2\pi l$$
, $l \in \mathbb{Z}$.

 Γ)-3 + 2 π k , $k \in \mathbb{Z}$.

545.

- а) Да, можно.
- б) Да, можно.
- в) Да, можно ($6,2 < 2\pi$).
- г) Нет, нельзя $(6,3 > 2\pi)$.

546.

- a) $\frac{23\pi}{12}$. 6) $\frac{\pi}{12}$.
- B) $\frac{\pi}{12}$. Γ) $\frac{23\pi}{12}$.

- a) $\frac{547.}{10} = \frac{\pi}{5}$. 6) $\frac{3\pi}{10}$.
- B) $\frac{9\pi}{5}$. Γ) $\frac{17\pi}{10}$.

- a) $\frac{\pi}{12}$. 6) $\frac{19\pi}{12}$.
- B) $\frac{23\pi}{12}$. Γ) $\frac{5\pi}{12}$.

- a) 2π , -2π ; 6) $\frac{\pi}{2}$, $-\frac{3\pi}{2}$;
- B) π , $-\pi$; Γ) $\frac{3\pi}{2}$, $-\frac{\pi}{2}$;

- B) $\frac{7\pi}{6}$, $-\frac{5\pi}{6}$. Γ) $\frac{11\pi}{6}$, $-\frac{\pi}{6}$.

a) $\frac{\pi}{3}$, 6) $\frac{\pi}{2}$,

B) $\frac{7\pi}{6}$, Γ) $\frac{\pi}{3}$.

- $\begin{array}{l} {\bf 552.} \\ {\bf a)} \ \ \frac{3\pi}{2} < 6 < 2\pi \ . \ \ {\bf B} \ {\bf четвертой}. \end{array}$
- б) $-\frac{3\pi}{2} < -5 < -2\pi$. В первой.
- в) $\frac{\pi}{2} < 3 < \pi$. Во второй.
- г) $-2\pi < -6 < -\frac{3\pi}{2}$. В первой.

- a) $\frac{5\pi}{2} < 8 < 3\pi$. Во второй.
- б) $5\pi < 17 < \frac{11\pi}{2}$. В третьей.
- в) $\frac{19\pi}{2} < 31 < 10\pi$. В четвертой.
- г) $30\pi < 95 < \frac{61\pi}{2}$. В первой.

§ 22. Числовая окружность в координатной плоскости

554.

- a) $M_1 (\frac{1}{2}; \frac{\sqrt{3}}{2}).$
- б) $M_2\ (\frac{\sqrt{2}}{2}\,;\,\frac{\sqrt{2}}{2}\,).$
- B) $M_3 (\frac{\sqrt{3}}{2}; \frac{1}{2}).$
- $\Gamma)~M_4~(~0;~1).$

- a) $M_1(0;1)$.
- б) $M_2(0; -1)$.
- в) $M_3(0; 1)$.
- Γ) M_4 (0; -1).

- a) $M_1(1; 0)$.
- б) $M_2(-1; 0)$.
- в) M_3 (1; 0).
- Γ) $M_4(1;0)$.

557.

- a) $M_1(1; 0)$.
- б) М₂ (0; 1).
- в) $M_3(-1;0)$.
- Γ) M_4 (0; 1).

558.

- a) $M_1(\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}).$
- $\text{ 6) } M_2\,(\frac{\sqrt{3}}{2}\,;\; -\frac{1}{2}\,).$
- B) $M_3(-\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}).$
- $\Gamma) \ M_4 \, (\, -\frac{1}{2} \, ; \, -\frac{\sqrt{3}}{2} \,).$

559

- a) $M_1(\frac{\sqrt{3}}{2}; \frac{1}{2})$.
- $\text{ 6) } M_2\,(\frac{\sqrt{2}}{2}\,;\,-\frac{\sqrt{2}}{2}\,).$
- в) $M_3 (\frac{\sqrt{2}}{2} \, ; \, \frac{\sqrt{2}}{2} \,).$
- $\Gamma) \ M_4 \, (\frac{\sqrt{3}}{2} \, ; \, -\frac{1}{2}).$

- a) 2π ; -2π ;
- 6) $\frac{\pi}{2}$; $-\frac{3\pi}{2}$.
- $B)\ \pi;-\pi.$
- Γ) $\frac{3\pi}{2}$; $-\frac{\pi}{2}$.

a)
$$\frac{\pi}{4} + 2\pi k$$
 , $\frac{3\pi}{4} + 2\pi k$, $k \in \mathbb{Z}.$

6)
$$\frac{\pi}{6} + 2\pi k$$
, $\frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

в) πk , $k \in \mathbb{Z}$.

$$\Gamma) \frac{\pi}{3} + 2\pi k , \frac{2\pi}{3} + 2\pi k , k \in \mathbb{Z}.$$

562

a)
$$-\frac{\pi}{3} + 2\pi k$$
, $-\frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

6)
$$\frac{\pi}{2} + 2\pi k$$
, $k \in \mathbb{Z}$.

$${\bf B}\big)\,-\frac{\pi}{4}+2\pi k\;,\;-\frac{3\pi}{4}+2\pi k\;,\,k\in{\bf Z}.$$

$$\Gamma) - \frac{\pi}{2} + 2\pi k , k \in \mathbb{Z}.$$

563

a)
$$\frac{\pi}{6} + 2\pi k$$
, $-\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

6)
$$\frac{\pi}{3} + 2\pi k$$
, $-\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

в)
$$2\pi k$$
 , $k \in \mathbb{Z}$.

$$\Gamma(\frac{\pi}{4} + 2\pi k, -\frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}.$$

564

a)
$$\frac{\pi}{2} + \pi k$$
, $k \in \mathbb{Z}$.

б)
$$\frac{2\pi}{3} + 2\pi k$$
, $-\frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

B)
$$\frac{5\pi}{6} + 2\pi k$$
, $-\frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

$$\Gamma$$
) $\pi + 2\pi k$, $k \in \mathbb{Z}$.

а)
$$|0,7| < 1$$
. Да, имеется.

б)
$$\left| \frac{\pi}{3} \right| > 1$$
. Нет, не имеется.

- в) $\left| \frac{\pi}{4} \right| < 1$. Да, имеется.
- г) |1,2| > 1. Нет, не имеется.

- a) M $(\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2})$.
- б) M $\left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$.
- B) M $(\frac{-\sqrt{2}}{2}; -\frac{\sqrt{2}}{2})$
- r) M $(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2})$.

- a) M $(\frac{1}{2}; \frac{\sqrt{3}}{2});$
- б) M $\left(-\frac{\sqrt{3}}{2}; -\frac{1}{2}\right);$
- B) M $(\frac{1}{2}; -\frac{\sqrt{3}}{2});$
- r) M $\left(-\frac{\sqrt{3}}{2}; -\frac{1}{2}\right)$.

- 568. a) $\frac{\pi}{4}$; $-\frac{7\pi}{4}$.
- 6) $\frac{3\pi}{4}$; $-\frac{5\pi}{4}$.
- B) $\frac{5\pi}{4}$; $-\frac{3\pi}{4}$.
- Γ) $\frac{7\pi}{4}$; $-\frac{\pi}{4}$.

- 569. a) $\frac{\pi}{6}$; $-\frac{11\pi}{6}$.
- 6) $\frac{2\pi}{3}$; $-\frac{4\pi}{3}$.

- B) $\frac{5\pi}{3}$; $-\frac{\pi}{3}$.
- Γ) $\frac{7\pi}{6}$; $-\frac{5\pi}{6}$.

- a) $\frac{5\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$. b) $\frac{5\pi}{6} + 2\pi k$; $k \in \mathbb{Z}$. c) $\frac{\pi}{6} + 2\pi k$; $k \in \mathbb{Z}$. c) $\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

- a) $\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.
- 6) $\frac{4\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.
- B) $\frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.
- $\Gamma) \ \frac{2\pi}{3} + 2\pi k \ , \ k \in \mathbb{Z}.$

- a) x < 0, y > 0. 6) x < 0, y < 0. b) x > 0, y > 0. 7) x > 0, y < 0.

573.

- a) x > 0, y < 0.
- 6) x < 0, y > 0.
- B) x > 0, y < 0.
- Γ) x < 0, y < 0.

§ 23. Синус и косинус. Тангенс и котангенс

574.

- a) $\sin t = 0$, $\cos t = 1$.
- 6) $\sin t = 1$, $\cos t = 0$.
- B) $\sin t = -1$, $\cos t = 0$.
- Γ) sin t = -0, cos t = -1.

- a) sin t = 0, cos = 1.
- б) sin t = -1, cos t = 0.
- B) $\sin t = 1$, $\cos t = 0$.

 Γ) sin t = 0, cos t = -1.

a)
$$\sin t = \frac{1}{2}$$
; $\cos t = -\frac{\sqrt{3}}{2}$.

6)
$$\sin t = -\frac{\sqrt{3}}{2}$$
; $\cos t = -\frac{1}{2}$.

B)
$$\sin t = \frac{1}{2}$$
; $\cos t = -\frac{\sqrt{3}}{2}$.

$$\Gamma$$
) $\sin t = \frac{\sqrt{3}}{2}$; $\cos t = \frac{1}{2}$.

a)
$$\sin t = -\frac{\sqrt{2}}{2}$$
; $\cos t = -\frac{\sqrt{2}}{2}$.

6)
$$\sin t = \frac{\sqrt{2}}{2}$$
; $\cos t = \frac{\sqrt{2}}{2}$.

B)
$$\sin t = -\frac{\sqrt{2}}{2}$$
; $\cos t = \frac{\sqrt{2}}{2}$.

r)
$$\sin t = -\frac{\sqrt{2}}{2}$$
; $\cos t = -\frac{\sqrt{2}}{2}$.

- 578. a) "+".
- б) "-".
- в) "-".
- г) "-".

- a) "-".
- б) "-".
- в) "-".
- г) "+".

a)
$$sin\left(-\frac{\pi}{4}\right) + \cos\frac{\pi}{3} + \cos\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{2}}{2} + \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{\sqrt{3} + 1 - \sqrt{2}}{2}$$
.

6)
$$\sin\left(-\frac{\pi}{2}\right) - \cos(-\pi) + \sin\left(-\frac{3\pi}{2}\right) = -1 + 1 + 1 = 1$$
.

a) $2\sin 0 + 3\cos\frac{\pi}{2} - 4\sin\frac{\pi}{2} = 0 + 0 - 4 = -4$.

6)
$$3\cos\left(-\frac{\pi}{3}\right) + 2\cos(-\pi) - 5\sin\left(-\frac{5\pi}{6}\right) = \frac{3}{2} - 2 + \frac{5}{2} = 2$$
.

a) $\cos \frac{\pi}{6} \cdot \cos \frac{\pi}{4} \cdot \cos \frac{\pi}{3} \cdot \cos \frac{\pi}{2} = 0$.

6)
$$\sin \frac{\pi}{6} \cdot \sin \frac{\pi}{4} \cdot \sin \frac{\pi}{3} \cdot \sin \frac{\pi}{2} = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \cdot 1 = \frac{\sqrt{6}}{8}$$
.

$$\sin t = \frac{3}{5}$$

a)
$$\sin(t+2\pi) = \sin t = \frac{3}{5}$$
.

6)
$$\sin(t-\pi) = -\sin t = -\frac{3}{5}$$
.

B)
$$\sin(t-2\pi) = \sin t = \frac{3}{5}$$
.

$$\Gamma) \sin(t+\pi) = -\sin t = -\frac{3}{5}.$$

$$584.$$

$$\cos t = -\frac{4}{5}$$

a)
$$\cos(t + 2\pi) = \cos t = -\frac{4}{5}$$
.

6)
$$\cos(t-\pi) = -\cos t = \frac{4}{5}$$
.

B)
$$\cos(t-2\pi) = \cos t = -\frac{4}{5}$$
.

$$\Gamma) \cos(t+\pi) = -\cos t = \frac{4}{5}.$$

a)
$$tg \frac{5\pi}{4} = +1$$
.

6)
$$tg \frac{2\pi}{3} = -\sqrt{3}$$
.

B)
$$tg\frac{\pi}{6} = \frac{1}{\sqrt{3}}$$
.

$$\Gamma$$
) $tg \frac{5\pi}{6} = -\frac{1}{\sqrt{3}}$.

a)
$$ctg \frac{4\pi}{3} = +\frac{1}{\sqrt{3}}$$
.

б) ctg 0 - не существует.

B)
$$ctg \frac{7\pi}{4} = -1$$

B)
$$ctg \frac{7\pi}{4} = -1$$
. $r) ctg \frac{2\pi}{3} = -\frac{1}{\sqrt{3}}$.

a)
$$tg\left(-\frac{2\pi}{3}\right) = \sqrt{3} .6$$
 $ctg\left(-\frac{7\pi}{4}\right) = 1 .$

B)
$$ctg\left(-\frac{5\pi}{6}\right) = \sqrt{3}$$
. Γ) $tg\left(-\frac{4\pi}{3}\right) = -\sqrt{3}$.

$$\Gamma) tg\left(-\frac{4\pi}{3}\right) = -\sqrt{3}.$$

a)
$$tg\frac{\pi}{4} + ctg\frac{5\pi}{4} = 1 + 1 = 2$$
.

6)
$$ctg \frac{\pi}{3} - tg \frac{\pi}{6} = \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} = 0$$
.

B)
$$tg\frac{\pi}{6} - ctg\frac{\pi}{6} = \frac{1}{\sqrt{3}} - \sqrt{3} = -\frac{2}{\sqrt{3}}$$
.

$$\Gamma) tg \frac{9\pi}{4} + ctg \frac{\pi}{4} = 1 + 1 = 2.$$

a)
$$tg \frac{\pi}{4} \cdot \sin \frac{\pi}{3} \cdot ctg \frac{\pi}{6} = 1 \cdot \frac{\sqrt{3}}{2} \cdot \sqrt{3} = \frac{3}{2}$$

6)
$$2\sin\frac{\pi}{3}\cos\frac{\pi}{6} - \frac{1}{2}tg\frac{\pi}{3} = 2\cdot\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{2} - \frac{1}{2}\cdot\sqrt{3} = \frac{3}{2} - \frac{\sqrt{3}}{2} = \frac{3-\sqrt{3}}{2}$$
.

B)
$$2\sin \pi + 3\cos \pi + ctg \frac{\pi}{2} = 0 - 3 + 0 = -3$$
.

r)
$$2tg + 8\cos\frac{3\pi}{2} - 6\sin\frac{\pi}{3} = 0 + 0 - 6\cdot\frac{\sqrt{3}}{2} = -3\sqrt{3}$$
.

a)
$$tg \frac{\pi}{5} \cdot ctg \frac{\pi}{5} = 1$$
. 6) $-4tg 2,3 \cdot ctg 2,3 = -4$.

B)
$$3tg\frac{\pi}{7} \cdot ctg\frac{\pi}{7} = 3$$
. Γ) $7tg\frac{\pi}{12} \cdot ctg\frac{\pi}{12} = 7$.

(r)
$$7tg \frac{\pi}{12} \cdot ctg \frac{\pi}{12} = 7$$
.

$$tgt = \frac{3}{4}$$
.

a)
$$tg(t+\pi) = tg \ t = \frac{3}{4}$$
. 6) $tg(t-\pi) = tg \ t = \frac{3}{4}$.

6)
$$tg(t-\pi) = tg \ t = \frac{3}{4}$$

B)
$$tg(t-4\pi) = tg \ t = \frac{3}{4}$$
. Γ) $tg(t+2\pi) = tg \ t = \frac{3}{4}$.

$$f(t) tg(t+2\pi) = tg t = \frac{3}{4}$$

a)
$$\sin t = 0$$

$$t = \pi k, k \in \mathbb{Z}$$
.

6)
$$\sin t = \frac{\sqrt{2}}{2}$$
. $t = \frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$. $t = \frac{3\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$.

B)
$$\sin t = 1$$
. $t = \frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$.

r)
$$\sin t = \frac{\sqrt{3}}{2}$$
; $t = \frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$. $t = \frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

a)
$$\sin t = -1$$

$$t = -\frac{\pi}{2} + 2\pi k , \ k \in \mathbb{Z}.$$

6)
$$\sin t = -\frac{\sqrt{3}}{2}$$
. $t = -\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$. $t = -\frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

B)
$$\sin t = -0.5$$
. $t = -\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$. $t = -\frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

r)
$$\sin = -\frac{\sqrt{2}}{2}$$
. $t = -\frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$. $t = -\frac{3\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$.

a)
$$\cos t = 0$$
; $t = \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$.

6)
$$\cos t = \frac{\sqrt{3}}{2}$$
; $t = \pm \frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

B)
$$\cos t = \frac{1}{2}$$
; $t = \pm \frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

$$\Gamma$$
) $\cos t = \frac{\sqrt{2}}{2}$; $t = \pm \frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$.

a)
$$\cos t = -0.5$$
; $t = \pm \frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$

6)
$$\cos t = -\frac{\sqrt{2}}{2}$$
; $t = \pm \frac{3\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$.

B)
$$\cos t = -1$$
; $t = \pi + 2\pi k$, $k \in \mathbb{Z}$.

r)
$$\cos t = -\frac{\sqrt{3}}{2}$$
; $t = \pm \frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

- **596.** a) "+".
- б) "-".
- в) "+".
- г) "-".

- a) "-".
- б) "-".
- в) "-".
- г) "-".

598.

- a) "-".
- б) "+".
- в) "+".
- г) "+".

Выражение имеет смысл только тогда, когда подкоренное выражение неотрицательно.

a) $\sin 11.2\pi < 0$.

Нет, не имеет.

б) $\cos 1.3\pi < 0$.

Нет, не имеет.

B) $sin(-3.4\pi) > 0$.

Да, имеет.

 Γ) $\cos(-6.9\pi) < 0$.

Нет, не имеет.

600.

$$\sin^2(1,5+2\pi k) + \cos^2(1,5) + \cos\left(-\frac{\pi}{4}\right) + \sin\left(-\frac{\pi}{4}\right) =$$

$$= \sin^2(1,5) + \cos^2(1,5) + \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 1.$$

601.

$$\cos 1 + \cos(1+\pi) + \sin\left(-\frac{\pi}{3}\right) + \cos\frac{\pi}{6} = \cos 1 - \cos 1 - \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = 0.$$

602

$$\sin 2 + \sin(2 + \pi) + \cos^2\left(-\frac{\pi}{12}\right) + \sin^2\frac{\pi}{12} =$$

$$= \sin 2 - \sin 2 + \cos^2\left(\frac{\pi}{12}\right) + \sin^2\frac{\pi}{12} = 1.$$

603.

$$tg2.5 \cdot ctg2.5 + \cos^2 \pi - \sin^2 \frac{\pi}{8} - \cos^2 \frac{\pi}{8} = 1 + 1 - 1 = 1$$
.

604

a)
$$a = \sin \frac{7\pi}{10}, b = \sin \frac{5\pi}{6}$$

$$a \geq b$$
, так как $\frac{\pi}{2} < \frac{7\pi}{10} < \frac{5\pi}{6} < \pi$, а функция $\sin x$ — убывает на $\left\lceil \frac{\pi}{2}; \pi \right\rceil$

6)
$$a = \cos 2$$
, $b = \sin 2$.

$$a < b$$
, так как $a < 0$, $b > 0$

B)
$$a = \cos\frac{\pi}{8}$$
, $b = \cos\frac{\pi}{3}$

$$a > b$$
, так как $\frac{\pi}{8} < \frac{\pi}{3}$, а функция $\cos x$ убывает на $\left[0; \frac{\pi}{2}\right]$.

$$\Gamma) \ a = \sin 1, \ b = \cos 1.$$

$$b = \cos 1 = \sin\left(\frac{\pi}{2} - 1\right)$$
, $a > b$, так как $\frac{\pi}{2} - 1 < 1$, а функция

$$y = sin x$$
 — возрастает на $\left[0; \frac{\pi}{2}\right]$.

Ответ, приведенный в задачнике, не верен.

a)
$$\sin \frac{4\pi}{3}, \sin \frac{7\pi}{6}, \sin \frac{\pi}{7}, \sin \frac{\pi}{5}, \sin \frac{2\pi}{3}$$
.

6)
$$\cos \frac{5\pi}{6}$$
, $\cos \frac{5\pi}{4}$, $\cos \frac{7\pi}{4}$, $\cos \frac{\pi}{3}$, $\cos \frac{\pi}{8}$.

606

a)
$$\cos \frac{5\pi}{9} - tg \frac{25\pi}{18} = \cos \frac{5\pi}{9} - tg \frac{7\pi}{18}$$
,

 $\cos \frac{5\pi}{9} < 0$, $tg \frac{7\pi}{18} > 0$, значит наше выражение имеет знак "-".

$$6$$
) $tg1 - \cos 2$

tg1 > 0, $\cos 2 < 0$, значит наше выражение имеет знак "+".

B)
$$\sin \frac{7\pi}{10} - ctg \frac{3\pi}{5}$$
,

$$\sin \frac{7\pi}{10} > 0$$
, $ctg \frac{3\pi}{5} < 0$, значит выражение имеет знак "+".

г) $\sin 2 - ctg$ 5,5 $\sin 2 > 0$, ctg 5,5 < 0, значит выражение имеет знак "+".

607.

a)
$$sin1 \cdot cos\ 2 \cdot tg\ 3 \cdot ctg\ 4$$

$$sin 1 > 0$$
, $cos 2 < 0$, $tg 3 < 0$, $ctg 4 > 0$.

Выражение имеет знак "+".

6)
$$sin(-5) \cdot cos(-6) \cdot tg(-7) \cdot ctg(-8)$$
,

$$sin(-5) > 0$$
, $cos(-6) > 0$, $tg(-7) < 0$, $ctg(-8) > 0$.

Выражение имеет знак "-".

a)
$$\sqrt{40} \sin t = \sqrt{10}$$
.

$$\sin t = \frac{1}{2}$$
; $t = \frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$. $t = \frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

$$6) \ 2\sin t - \sqrt{3} = 0$$

$$\sin t = \frac{\sqrt{3}}{2}$$
; $t = \frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$. $t = \frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

B)
$$6\sin t + \sqrt{27} = 0$$
.

$$6\sin t = -3\sqrt{3} \; ; \; \sin t = -\frac{\sqrt{3}}{2} \; ; \; t = -\frac{\pi}{3} + 2\pi k \; , \; k \in \mathbb{Z}. \; t = -\frac{2\pi}{3} + 2\pi k \; , \; k \in \mathbb{Z}.$$

$$\Gamma$$
) 2sin $t + 1 = 0$

$$sin\ t = -\frac{1}{2}\,;\ t = -\frac{\pi}{6} + 2\pi k\;,\, k \in \mathbb{Z}.;\ t = -\frac{5\pi}{6} + 2\pi k\;,\, k \in \mathbb{Z}.$$

a)
$$\sqrt{50}\cos t = 5$$

$$\cos t = \frac{1}{\sqrt{2}}; \ t = \pm \frac{\pi}{4} + 2\pi k, \ k \in \mathbb{Z}.$$

6)
$$2\cos t + \sqrt{3} = 0$$

$$\cos t = -\frac{\sqrt{3}}{2}$$
; $t = \pm \frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

B)
$$4\cos = \sqrt{12}$$

$$\cos t = \frac{\sqrt{3}}{2} \; ; \; t = \pm \frac{\pi}{6} + 2\pi k \; , \, k \in \mathbb{Z}.$$

$$\Gamma$$
) 2 $\cos t - 1 = 0$.

$$\cos t = \frac{1}{2}$$
; $t = \pm \frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

§ 24. Тригонометрические функции числового аргумента

a)
$$1 - \sin^2 t = \cos^2 t$$

a)
$$1 - \sin^2 t = \cos^2 t$$
.
b) $1 - \cos^2 t = \sin^2 t$.
6) $\cos^2 t - 1 = -\sin^2 t$.
c) $\sin^2 t - 1 = -\cos^2 t$.

B)
$$1 - \cos^2 t = \sin^2 t$$

$$\Gamma) \sin^2 t - 1 = -\cos^2 t.$$

a)
$$(1 - \sin t)(1 + \sin t) = 1 - \sin^2 t = \cos^2 t$$
.

6)
$$\cos^2 t + (1 - \sin^2 t) = 2\cos^2 t$$
.

B)
$$(1 - \cos t)(1 + \cos t) = 1 - \cos^2 t = \sin^2 t$$
.

$$\Gamma$$
) $sin^2t + 2cos^2t - 1 = 1 + cos^2t - 1 = cos^2t$.

a)
$$sin^2t + cos^2t + 1 = 2$$
.

6)
$$1 - \sin^2 t + \cos^2 t = 2\cos^2 t$$
.

B)
$$\cos^2 t - (1 - 2\sin^2 t) = \cos^2 t + \sin^2 t - 1 + \sin^2 t = \sin^2 t$$
.

$$\Gamma$$
) 1 - $(\cos^2 t - \sin^2 t) = \sin^2 t + \sin^2 t = 2\sin^2 t$.

a)
$$\frac{1}{\cos^2 t} - 1 = \frac{1 - \cos^2 t}{\cos^2 t} = tg^2 t$$
.

6)
$$\frac{1-\sin^2 t}{\cos^2 t} = \frac{\cos^2 t}{\cos^2 t} = 1$$
, $t \neq \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$.

B)
$$1 - \frac{1}{\sin^2 t} = \frac{\sin^2 t - 1}{\sin^2 t} = -\frac{\cos^2 t}{\sin^2 t} = -ctg^2 t$$

$$\Gamma$$
) $\frac{1-\cos^2 t}{1-\sin^2 t} = \frac{\sin^2 t}{\cos^2 t} = tg^2 t$.

a)
$$cost \cdot tg \ t = cost \cdot \frac{\sin t}{\cos t} = sin \ t, \ t \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}.$$

6)
$$\sin t + \cos t \cdot tg \ t = \sin t + \sin t = 2\sin t$$
, $t \neq \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$.

B)
$$\sin t \cdot ctg \ t = \sin t \cdot \frac{\cos t}{\sin t} = \cos t \ , \ t \neq \pi k \ , k \in \mathbb{Z}.$$

$$\Gamma) \ 2\sin t \cdot ctg \ t + \cos t = 3\cos t \ , \ t \neq \pi k \ , k \in \mathbb{Z}.$$

615.

a)
$$\sin t \cdot \cos t \cdot \operatorname{ctg} t - 1 = \sin t \cdot \frac{\cos^2 t}{\sin t} - 1 = \cos^2 t - 1 = -\sin^2 t$$
, $t \neq \pi k$, $k \in \mathbb{Z}$.

6)
$$\sin^2 t + \cos^2 t + \operatorname{tg}^2 t = 1 + \operatorname{tg}^2 t = 1 + \frac{\sin^2 t}{\cos^2 t} = \frac{1}{\cos^2 t}$$
.

B)
$$\sin^2 t - tg \ t \cdot ctg \ t = \sin^2 t - 1 = -\cos^2 t$$
, $t \neq \frac{\pi k}{2}$, $k \in \mathbb{Z}$.

$$\Gamma) \ tg \ t \cdot ctg \ t + ctg^{2}t = 1 + ctg^{2}t = \frac{\sin^{2}t + \cos^{2}t}{\sin^{2}t} = \frac{1}{\sin^{2}t},$$

$$t \neq \pi k \ , k \in \mathbb{Z}.$$

a)
$$\sin t = \frac{4}{5}$$
, $\frac{\pi}{2} < t < \pi$, to ects $\cos t < 0$,

$$\cos t = -\sqrt{1 - \sin^2 t} = -\frac{3}{5} \,,$$

$$tg \ t = \frac{\sin t}{\cos t} = -\frac{4}{3}$$
; $ctg \ t = \frac{\cos t}{\sin t} = -\frac{3}{4}$.

б)
$$\sin t = \frac{5}{13}$$
, $0 < t < \frac{\pi}{2}$, то есть $\cos t > 0$,

$$\cos t = \sqrt{1 - \sin^2 t} = \frac{12}{13}$$

$$tg \ t = \frac{\sin t}{\cos t} = \frac{5}{12} \ ; \ ctg \ t = \frac{\cos t}{\sin t} = \frac{12}{5} \ .$$

в)
$$sin\ t = -0.6;\ -\frac{\pi}{2} < t < 0$$
, то есть $cos\ t > 0$,

$$\cos t = \sqrt{1 - \sin^2 t} = 0.8 ,$$

$$tg\ t = -\frac{3}{4}$$
; $ctg\ t = -\frac{4}{3}$.

г)
$$\sin t = -0.28$$
; $\pi < t < \frac{3\pi}{2}$, то есть $\cos t < 0$,

$$\cos t = -\sqrt{1 - \sin^2 t} = -0.96 \; ,$$

$$tg\ t = \frac{\sin t}{\cos t} = \frac{7}{24}$$
; $ctg\ t = \frac{24}{7}$.

a)
$$\cos t = 0.8$$
, $0 < t < \frac{\pi}{2}$, to есть $\sin t > 0$,

$$\sin t = \sqrt{1 - \cos^2 t} = 0.6 \,,$$

$$tg\ t = \frac{\sin t}{\cos t} = \frac{3}{4};\ ctg\ t = \frac{4}{3}.$$

б)
$$\cos t = -\frac{5}{13}, \frac{\pi}{2} < t < \pi$$
, то есть $\sin t > 0$

$$\sin t = \sqrt{1 - \cos^2 t} = \frac{12}{13}$$

$$tgt = \frac{\sin t}{\cos t} = -\frac{12}{5}$$
; $ctgt = -\frac{5}{12}$.

в)
$$\cos t = 0.6$$
, $\frac{3\pi}{2} < t < 2\pi$, то есть $\sin t < 0$,

$$\sin t = -\sqrt{1 - \cos^2 t} = -0.8 ,$$

$$tg\,t=rac{\sin t}{\cos t}=rac{-0.8}{0.6}=-rac{4}{3}\;;\,ctg\,t=-rac{3}{4}\;.$$
 Ошибка в ответе задачника.

r)
$$\cos t = -\frac{24}{25}$$
, $\pi < t < \frac{3\pi}{2}$, to ects $\sin t < 0$

$$\sin t = -\sqrt{1 - \cos^2 t} = -\frac{7}{25},$$

$$tg t = \frac{7}{24}$$
; $ctg t = \frac{24}{7}$.

a)
$$tg t = \frac{3}{4}$$
, $0 < t < \frac{\pi}{2}$, to ecth $cos t > 0$.

$$\cos^2 t = \frac{1}{1 + tg^2 t}$$
; $\cos t = \sqrt{\frac{1}{1 + tg^2 t}} = \frac{4}{5}$;

$$\sin t = tg \ t \cdot \cos t = \frac{3}{5}; \ ctg \ t = \frac{4}{3}.$$

б)
$$tg \ t = 2,4$$
, $\pi < t < \frac{3\pi}{2}$, то есть $\cos t < 0$,

$$\cos t = -\sqrt{\frac{1}{1 + tg^2 t}} = -\frac{5}{13} \; ; \; \sin t = tg \; t \cdot \cos t = -\frac{12}{13} \; ; \; ctg \; t = \frac{5}{12} \; .$$

в)
$$tg t = -\frac{3}{4}$$
, $\frac{\pi}{2} < t < \pi$, то есть $cos t < 0$.

$$\cos t = -\sqrt{\frac{1}{1 + tg^2 t}} = -\frac{4}{5}; \sin t = tg \ t \cdot \cos t = \frac{3}{5}; \ ctg \ t = -\frac{4}{3}.$$

r)
$$tg t = -\frac{1}{3}$$
, $\frac{3\pi}{2} < t < 2\pi$, to ects $cos t > 0$.

$$\cos t = \sqrt{\frac{1}{1 + tg^2 t}} = \frac{3}{\sqrt{10}}; \sin t = tg \ t \cdot \cos t = -\frac{1}{\sqrt{10}}; \ ctg \ t = -3.$$

a)
$$ctg \ t = \frac{12}{5}, \ \pi < t < \frac{3\pi}{2}, \text{ To ects } sin \ t < 0.$$

$$\sin t = -\sqrt{\frac{1}{1 + ctg^2 t}} = -\frac{5}{13}; \cos t = ctg \ t \cdot \sin t = -\frac{12}{13}; \ tg \ t = \frac{5}{12}.$$

б)
$$ctg\ t = \frac{7}{24}$$
, $0 < t < \frac{\pi}{2}$, то есть $sin\ t > 0$,

$$\sin t = \sqrt{\frac{1}{1 + ctg^2 t}} = \frac{24}{25}; \cos t = ctg \ t \cdot \sin t = \frac{7}{25}; tg \ t = \frac{24}{7}.$$

в)
$$ctg\ t = -\frac{5}{12}$$
, $\frac{3\pi}{2} < t < 2\pi$, то есть $sin\ t < 0$,

$$\sin t = -\sqrt{\frac{1}{1 + ctg^2 t}} = -\frac{12}{13}; \cos t = ctg t \cdot \sin t = \frac{5}{13}; tg t = -\frac{12}{5}.$$

r) ctg
$$t = -\frac{8}{15}$$
, $\frac{\pi}{2} < t < \pi$, to ects $\sin t > 0$,

$$\sin t = \sqrt{\frac{1}{1 + ctg^2 t}} = \frac{15}{17}; \cos t = \sin t \cdot ctg \ t = -\frac{8}{17}; tg \ t = -\frac{15}{8}.$$

a)
$$(\sin t + \cos t)^2 - 2\sin t \cos t =$$

= $\sin^2 t + \cos^2 t + 2\sin t \cos t - 2\sin t \cos t = 1$.

$$6) \frac{2-\sin^2 t - \cos^2 t}{3\sin^2 t + 3\cos^2 t} = \frac{2-1}{3} = \frac{1}{3}.$$

B)
$$\sin^4 t + \cos^4 t + 2\sin^2 t \cos^2 t = (\sin^2 t + \cos^2 t)^2 = 1$$
.

$$\Gamma \int \frac{\sin^4 t - \cos^4 t}{\sin^2 t - \cos^2 t} = \frac{(\sin^2 t - \cos^2 t)(\sin^2 t + \cos^2 t)}{\sin^2 t - \cos^2 t} = 1,$$

$$t \neq \frac{\pi}{4} + \frac{\pi k}{2}$$
, $k \in \mathbb{Z}$.

a)
$$(\sin t + \cos t)^2 + (\sin t - \cos t)^2 =$$

$$= \sin^2 t + \cos^2 t + 2\sin t \cos t + \sin^2 t + \cos^2 t - 2\sin t \cos t = 2.$$

6)
$$(tg t + ctg t)^2 - (tg t - ctg t)^2 =$$

6)
$$(tg t + ctg t)^2 - (tg t - ctg t)^2 =$$

= $tg^2t + ctg^2t + 2 - tg^2t - ctg^2t + 2 = 4$.

B)
$$\sin t \cos t \cdot (tg \ t + ctg \ t) = \sin t \cos t \left(\frac{\sin t}{\cos t} + \frac{\cos t}{\sin t} \right) =$$

$$= \sin t \cos t \frac{\sin^2 t + \cos^2 t}{\sin t \cos t} = 1, t \neq \frac{\pi k}{2}, k \in \mathbb{Z}.$$

r)
$$sin^2t cos^2t (tg^2t + ctg^2t + 2) = sin^2t cos^2t (tg t + ctg t)^2 =$$

$$= \sin^2 t \cos^2 t \left(\frac{\sin^2 t + \cos^2 t}{\cos t \sin t} \right)^2 = 1, t \neq \frac{\pi k}{2}, k \in \mathbb{Z}.$$

a)
$$\frac{\sin t}{1 + \cos t} + \frac{\sin t}{1 - \cos t} = \frac{\sin t (1 - \cos t + 1 + \cos t)}{1 - \cos^2 t} = \frac{2\sin t}{\sin^2 t} = \frac{2}{\sin t}$$
.

6)
$$(1 + tg t)^2 + (1 - tg t)^2 = 1 + tg^2 t + 2 tg t + 1 + tg^2 t - 2tg t =$$

$$= 2(tg^2t + 1) = \frac{2}{\cos^2 t}.$$

B)
$$\frac{\cos t}{1+\sin t} + \frac{\cos t}{1-\sin t} = \frac{\cos t(1-\sin t + 1 + \sin t)}{1-\sin^2 t} = \frac{2\cos t}{\cos^2} = \frac{2}{\cos t}$$
.

r)
$$(1 + ctg t)^2 + (1 - ctg t)^2 = 1 + ctg^2t + 2ctg t + 1 + ctg^2t - 2 ctg t =$$

$$= 2(ctg^2t + 1) = \frac{2}{\sin^2 t}.$$

a)
$$\frac{1-\sin^2 t}{1-\cos^2 t} + tg \ t \cdot ctg \ t = \frac{\cos^2 t}{\sin^2 t} + 1 = \frac{1}{\sin^2 t}$$
.

6)
$$ctg t + \frac{\sin t}{1 + \cos t} = \frac{\cos t}{\sin t} + \frac{\sin t}{1 + \cos t} = \frac{\sin^2 t + \cos t + \cos^2 t}{\sin t (1 + \cos t)} = \frac{1}{\sin t}$$
.

B)
$$\frac{\cos^2 t - 1}{\sin^2 t - 1} + tg \ t \cdot ctg \ t = \frac{-\sin^2 t}{-\cos^2 t} + 1 = \frac{1}{\cos^2 t}$$

$$\Gamma \int tg \, t + \frac{\cos t}{1 + \sin t} = \frac{\sin t}{\cos t} + \frac{\cos t}{1 + \sin t} = \frac{\sin t + \sin^2 t + \cos^2 t}{\cos t (1 + \sin t)} = \frac{1 + \sin t}{\cos t (1 + \sin t)} = \frac{1}{\cos t} \, .$$

$$\frac{\sin t}{1 + \cos t} + \frac{\sin t}{1 - \cos t} = \frac{\sin t (1 - \cos t + 1 + \cos t)}{1 - \cos^2 t} = \frac{2\sin t}{\sin^2 t} = \frac{2}{\sin t}.$$

- a) -16.
- б) $2\sqrt{3}$.

625.

a)
$$\frac{1-\cos^2 t}{\sin t} = \frac{\sin^2 t}{\sin t} = \sin t = \sin(t+4\pi)$$
.

6)
$$ctg \ t \cdot \sin t = \frac{\cos t}{\sin t} \cdot \sin t = \cos t = \cos(t - 2\pi)$$
.

B)
$$tg \ t \cdot \cos(t + 6\pi) = \frac{\sin t}{\cos t} \cdot \cos t = \sin t = \sin(t + 2\pi)$$
.

$$\Gamma) \sin^2(t+4\pi) + \cos^2(t+2\pi) - \sin^2(t-2\pi) - \cos^2(t-8\pi) = \\ = \sin^2 t + \cos^2 t - \sin^2 t - \cos^2 t = 0.$$

a)
$$\frac{tg t}{tg t + ctg t} = \frac{tg t}{\frac{\sin t}{\cos t} + \frac{\cos t}{\sin t}} = \frac{tg t}{\frac{\sin^2 t + \cos^2 t}{\cos t \sin t}} = \frac{tg t}{\frac{\sin^2 t + \cos^2 t}{\cos t \sin t}}$$

$$= \frac{\sin t}{\cos t} \cdot \cos t \cdot \sin t = \sin^2 t.$$

6)
$$\frac{1+tg\ t}{1+ctg\ t} = \frac{\frac{1+tgt}{tgt+1}}{tgt} = tg\ t\ .$$

B)
$$\frac{ctg t}{tg t + ctg t} = \frac{ctg t}{\frac{\sin t}{\cos t} + \frac{\cos t}{\sin t}} = \frac{ctg t}{\frac{\sin^2 t + \cos^2 t}{\cos t \cdot \sin t}} = \frac{\cos t}{\sin t} \cdot \cos t \cdot \sin t = \cos^2 t.$$

$$\Gamma) \frac{1 - ctg t}{1 - tg t} = \frac{1 - \frac{\cos t}{\sin t}}{1 - \frac{\sin t}{\cos t}} = \frac{\frac{\sin t - \cos t}{\sin t}}{\frac{\cos t - \sin t}{\cos t}} = -\frac{\cos t}{\sin t} = -ctg t.$$

$$\sin(4\pi + t) = \frac{3}{5}$$
, $0 < t < \frac{\pi}{2}$, to есть $\cos t > 0$,

$$tg(\pi - t) = tg(-t) = -tg \ t = -\frac{\sin t}{\cos t} = -\frac{\sin(4\pi + t)}{\sqrt{1 - \sin^2(4\pi + t)}} = -\frac{\frac{3}{5}}{\frac{4}{5}} = -\frac{3}{4}.$$

628.

$$\cos(2\pi - t) = \frac{12}{13}, \ \frac{3\pi}{2} < t < 2\pi$$
, то есть $\sin t < 0$,

$$ctg(\pi - t) = ctg(-t) = -ctg \ t = -\frac{\cos t}{\sin t} = -\frac{\cos(-t)}{\sin t} = -\frac{\cos(-$$

$$= -\frac{\cos(2\pi - t)}{-\sqrt{1 - \cos^2(2\pi - t)}} = -\frac{\frac{12}{13}}{-\sqrt{1 - \frac{144}{169}}} = +\frac{12}{5}.$$

629

$$\cos t = -\frac{5}{13}$$
, 8,5 < t < 9 π , To ects $\sin t > 0$,

$$\sin(-t) = -\sin t = -\sqrt{1-\cos^2 t} = -\frac{12}{13}.$$

630

$$\sin t = \frac{4}{5}, \frac{9\pi}{2} < t < 5\pi$$
, to ects $\cos t < 0$.

$$\cos(-t) + \sin(-t) = \cos t - \sin t = -\sqrt{1 - \sin^2 t} - \sin t = -\frac{3}{5} - \frac{4}{5} = -\frac{7}{5}.$$

§ 25. Тригонометрические функции углового аргумента

a)
$$\frac{2\pi}{3}$$
 . 6) $\frac{11\pi}{9}$.

B)
$$\frac{5\pi}{3}$$
. Γ) $4\frac{1}{4}\pi$.

a)
$$\frac{7\pi}{6}$$
. 6) $\frac{5\pi}{6}$.

B)
$$\frac{11\pi}{6}$$
. Γ) $\frac{11\pi}{3}$.

a)
$$\frac{128\pi}{45}$$
. 6) $\frac{43\pi}{36}$.

B)
$$\frac{35\pi}{18}$$
 . Γ) $\frac{171\pi}{36}$.

634

а) 135°. б) 660°. в) 216°. г) 920°.

635

а) 480°. б) 315°. в) 324°. г) 555°.

636

а) 300°. б) 675°. в) 375°. г) 280°.

637

a) $\sin \alpha = 1$; $\cos \alpha = 0$; $tg \alpha$ – He существует ; $ctg \alpha = 0$.

б)
$$\sin \alpha = 1$$
; $\cos \alpha = 0$; $tg \alpha$ – не существует ; $ctg \alpha = 0$.

в)
$$sin \alpha = 0$$
; $cos \alpha = 1$; $tg \alpha = 0$; $ctg \alpha$ – не существует.

г) $\sin \alpha = -1$; $\cos \alpha = 0$; $tg \alpha$ – не существует ; $ctg \alpha = 0$.

638.

a)
$$\sin \alpha = \frac{\sqrt{2}}{2}$$
; $\cos \alpha = -\frac{\sqrt{2}}{2}$; $tg \alpha = -1$; $ctg \alpha = -1$.

6)
$$\sin \alpha = -\frac{\sqrt{2}}{2}$$
; $\cos \alpha = \frac{\sqrt{2}}{2}$; $tg \alpha = -1$; $ctg \alpha = -1$.

B)
$$\sin \alpha = -\frac{\sqrt{2}}{2}$$
; $\cos \alpha = \frac{\sqrt{2}}{2}$; $tg \alpha = -1$; $ctg \alpha = -1$.

r)
$$\sin \alpha = \frac{\sqrt{2}}{2}$$
; $\cos \alpha = -\frac{\sqrt{2}}{2}$; $tg \alpha = -1$; $ctg \alpha = -1$.

a)
$$\sin \alpha = -\frac{1}{2}$$
; $\cos \alpha = \frac{\sqrt{3}}{2}$; $tg \alpha = -\frac{1}{\sqrt{3}}$; $ctg \alpha = -\sqrt{3}$.

6)
$$\sin \alpha = -\frac{1}{2}$$
; $\cos \alpha = -\frac{\sqrt{3}}{2}$; $tg \alpha = \frac{1}{\sqrt{3}}$; $ctg \alpha = \sqrt{3}$.

B)
$$\sin \alpha = -\frac{1}{2}$$
; $\cos \alpha = \frac{\sqrt{3}}{2}$; $tg \alpha = -\frac{1}{\sqrt{3}}$; $ctg \alpha = -\sqrt{3}$.

r)
$$\sin \alpha = -\frac{1}{2}$$
; $\cos \alpha = -\frac{\sqrt{3}}{2}$; $tg \alpha = \frac{1}{\sqrt{3}}$; $ctg \alpha = \sqrt{3}$.

a)
$$\sin \alpha = \frac{\sqrt{3}}{2}$$
; $\cos \alpha = -\frac{1}{2}$; $tg \alpha = -\sqrt{3}$; $ctg \alpha = -\frac{1}{\sqrt{3}}$.

6)
$$\sin \alpha = \frac{\sqrt{3}}{2}$$
; $\cos \alpha = -\frac{1}{2}$; $tg \alpha = -\sqrt{3}$; $ctg \alpha = -\frac{1}{\sqrt{3}}$.

B)
$$\sin \alpha = -\frac{\sqrt{3}}{2}$$
; $\cos \alpha = \frac{1}{2}$; $tg \alpha = -\sqrt{3}$; $ctg \alpha = -\frac{1}{\sqrt{3}}$.

r)
$$\sin \alpha = -\frac{\sqrt{3}}{2}$$
; $\cos \alpha = \frac{1}{2}$; $tg \alpha = -\sqrt{3}$; $ctg \alpha = -\frac{1}{\sqrt{3}}$.

- a) $x = 5 \sin \alpha$.

B)
$$x = \frac{3}{\cos \alpha}$$

B)
$$x = \frac{3}{\cos \alpha}$$
. r) $x = \frac{1}{tg\alpha} = ctg\alpha$.

a)
$$x = \frac{2}{\sin 30} = 4$$
. 6) $x = 1 \cdot \sin 45 = \frac{\sqrt{2}}{2}$.

B)
$$x = \frac{2}{\sin 60} = \frac{4}{\sqrt{3}}$$
. Γ) $x = 5 \cdot \cos 60 = \frac{5}{2}$

$$\Gamma$$
) $x = 5 \cdot \cos 60 = \frac{5}{2}$

а) Катеты:
$$a = c \sin \alpha = 12 \cdot \frac{\sqrt{3}}{2} = 6\sqrt{3}$$
, $b = c \cos \alpha = 12 \cdot \frac{1}{2} = 6$.

Площадь:
$$S = \frac{ab}{2} = 18\sqrt{3}$$
, $r = \frac{1}{2}c = 6$.

б) Катеты:
$$a = c \sin \alpha = 6 \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2}$$
, $b = c \cos \alpha = 6 \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2}$.

Площадь:
$$S = \frac{ab}{2} = 9$$
.

Радиус описанной окружности $r = \frac{1}{2}c = 3$.

в) Катеты: $a = c \sin \alpha = 4 \cdot \frac{1}{2} = 2$. $b = c \cos \alpha = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}$.

Площадь: $S = \frac{ab}{2} = 2\sqrt{3}$.

Радиус описаной окружности $r = \frac{1}{2}c = 2$

г) Катеты: $a = c \sin \alpha = 60 \cdot \frac{\sqrt{3}}{2} = 30\sqrt{3}$. $b = c \cos \alpha = 60 \cdot \frac{1}{2} = 30$.

Площадь: $S = \frac{ab}{2} = 450\sqrt{3}$.

Радиус описаной окружности $r = \frac{1}{2}c = 30$.

644.

sin 160, sin 40, sin 120, sin 80.

645

cos 160, cos 120, cos 80, cos 40.

646

sin 570, sin 210, cos 70, sin 110.

647

 ΔABC – прямоугольный (т.к. он вписан в окружность и одна его сторона является диаметром).

Тогда $AB = AC \cos \alpha = 2R \cos \alpha$.

648.

Рассмотрим выпуклый четырехугольник ABCD, диагонали AC и BD разбивают этот четырехугольник на четыре треугольника: ΔABO , ΔBCO , ΔCDO и ΔDAO , где O — точка пересечения диагоналей AC и BD. Пусть α — угол между диагоналями, т.е. $\angle COB = \angle AOD = \alpha$ (как вертикальные).

$$S_{\Delta ABO} = \frac{1}{2} AO \cdot OB \cdot \sin(180^{\circ} - \alpha) = \frac{1}{2} AO \cdot OB \cdot \sin\alpha;$$

$$S_{\Delta BCO} = \frac{1}{2}BO \cdot OC \cdot \sin\alpha;$$

$$S_{\Delta CDO} = \frac{1}{2} CO \cdot OD \cdot \sin(180^{\circ} - \alpha) = \frac{1}{2} CO \cdot OD \cdot \sin\alpha;$$

$$S_{\Delta DAO} = \frac{1}{2} AO \cdot OD \cdot \sin\alpha;$$

$$S_{ABCD} = S_{\Delta ABO} + S_{\Delta BCO} + S_{\Delta CDO} + S_{\Delta DAO} =$$

$$=\frac{1}{2}\sin\alpha(AO\cdot OB+BO\cdot OC+CO\cdot OD+AO\cdot OD)=$$

$$=\frac{1}{2}BD\cdot AC\cdot \sin\alpha \text{ (поскольку }BO+OD=BD; AO+OC=AC).$$

Из того, что сумма углов треугольника равна 180°, следует, что $\angle B = 180^{\circ} - \angle A - \angle C = 180^{\circ} - 45^{\circ} - 30^{\circ} = 105^{\circ}.$

По теореме синусов имеем:

Что и требовалось доказать.

$$\frac{AB}{\sin C} = \frac{AC}{\sin B} = \frac{BC}{\sin A} \text{, откуда } BC = \frac{AB}{\sin C} \cdot \sin A = \frac{4\sqrt{2}}{\frac{1}{2}} \cdot \frac{1}{\sqrt{2}} = 8 \text{ (см)}.$$

По теореме косинусов имеем:

$$BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos A;$$

$$64 = 32 + AC^2 - 8\sqrt{2} \cdot AC \cdot \frac{1}{\sqrt{2}};$$

$$AC^2 - 8AC - 32 = 0;$$

$$D = 64 + 128 = 192 = (8\sqrt{3})^2$$
;

$$AC = \frac{8 \pm 8\sqrt{3}}{2}$$
, откуда $AC = 4(1 + \sqrt{3})$ (см).

$$S_{\Delta ABC} = \frac{1}{2} AC \cdot BC \cdot \sin \angle C = \frac{1}{2} \cdot 8 \cdot 4((1 + \sqrt{3}) \cdot \frac{1}{2} = 8((1 + \sqrt{3})) \cdot (\text{cm}^2).$$

Otbet:
$$AC = 4(1 + \sqrt{3})$$
 cm; $S_{\triangle ABC} = 8(1 + \sqrt{3})$ cm².

§ 26. Функции $y = \sin x$, $y = \cos x$, их свойства и графики

650.

Боковая сторона данного треугольника, прилежащая к углу в 60°,

равна
$$\frac{5}{\sin 60^{\circ}} = \frac{5}{\frac{\sqrt{3}}{2}} = \frac{10}{\sqrt{3}}$$
 (см), а прилежащая к углу в 45° равна

$$\frac{5}{\sin 45^{\circ}} = \frac{5}{\frac{1}{\sqrt{2}}} = 5\sqrt{2}$$
 (см). Угол при вершине треугольника, из

которой опущена высота, равен $180^{\circ} - 45^{\circ} - 60^{\circ} = 75^{\circ}$. Следовательно, площадь треугольника равна:

$$\frac{1}{2} \cdot \frac{10}{\sqrt{3}} \cdot 5\sqrt{2} \cdot \sin 75^{\circ} = \frac{25\sqrt{2}}{\sqrt{3}} \cdot \frac{(1+\sqrt{3})}{2\sqrt{2}} = \frac{25\sqrt{3} \cdot (1+\sqrt{3})}{6} \text{ (cm}^2).$$

Otbet: $\frac{25\sqrt{3} \cdot (1+\sqrt{3})}{6}$ cm².

651

a) 0; б)
$$\frac{\sqrt{3}}{2}$$
; в) 0; г) $-\frac{\sqrt{3}}{2}$.

652.

a)
$$y = 2\sin\left(x - \frac{\pi}{6}\right) + 1$$
, $x = \frac{4\pi}{3}$, $f\left(\frac{4\pi}{3}\right) = -\frac{1}{2}$. $y = 2\cdot\left(-\frac{1}{2}\right) + 1 = 0$

6)
$$y = -\sin\left(x + \frac{\pi}{4}\right)$$
, $x = -\frac{\pi}{2}$, $f\left(-\frac{\pi}{2}\right) = \frac{\sqrt{2}}{2}$.

653

Точка принадлежит графику тогда и только тогда, когда ее координаты (x, y) удовлетворяют уравнению $y = \sin x$.

a)
$$-1 = sin\left(-\frac{\pi}{2}\right)$$
 – верно.

Принадлежит.

б)
$$\frac{1}{2} = \sin \frac{\pi}{2}$$
 – неверно.

Не принадлежит.

в) $1 = sin \pi - \text{неверно}.$

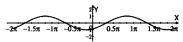
Не принадлежит.

$$\Gamma) -1 = \sin \frac{3\pi}{2} - \text{верно}.$$

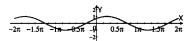
Принадлежит.

654.

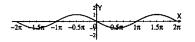
a)



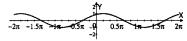
б)



в)

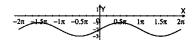


г)

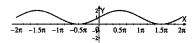


655.

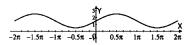
a)



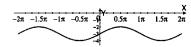
б)



в)

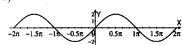


г)



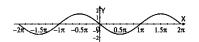
656.

a)

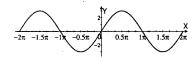


б)

в)



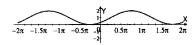
г)



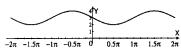
657.

a)

б)



B)



г)



658

a)
$$f\left(\frac{\pi}{2}\right) = 0$$
; 6) $f\left(\frac{-3\pi}{2}\right) = 0$; B) $f\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}$; r) $f\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$

659.

Точка (x, y) принадлежит графику тогда, кода $y = \cos x$.

а)
$$-1 = cos\left(-\frac{\pi}{2}\right)$$
 – неверно. Не принадлежит.

б)
$$-\frac{\sqrt{3}}{2} = \cos \frac{5\pi}{6}$$
 — верно. Принадлежит.

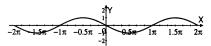
254

в)
$$-\frac{1}{2} = \cos \frac{2\pi}{3}$$
 — верно. Принадлежит.

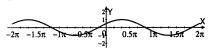
г) $1 = \sin 2\pi - \text{верно.}$ Принадлежит.

660.

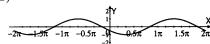
a)



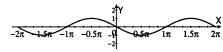
б)



B)

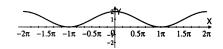


L)

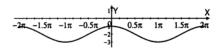


661.

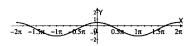
a)



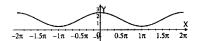
б)



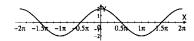
в)



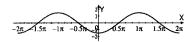
г)



a)

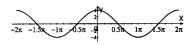


б)



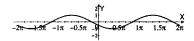
в)

г)

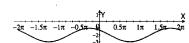


663.

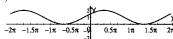
a)



б)

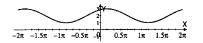


в)

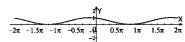


г)

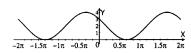
256



a)

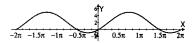


б)



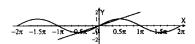
в)

г)



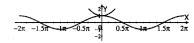
665.

a)
$$\sin x = \frac{2}{\pi}x$$
,



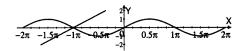
Решения: 0; $\frac{\pi}{2}$; $-\frac{\pi}{2}$.

6)
$$\cos x = x^2 + 1$$
.



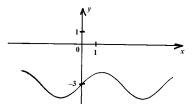
Решение: 0.

B)
$$\sin x = x + \pi$$
.



Решение: $x = -\pi$.

$$\Gamma) \sin x = 3 - \frac{4}{\pi}x.$$



Решение: $x = \frac{\pi}{2}$.

666.

a)
$$f(x) = x^5 \sin x$$

Рассмотрим: $f(-x) = (-x)^5 sin(-x) = x^5 sin x = f(x)$.

Причем, $D(f) = (-\infty; +\infty)$. Функция четная.

$$f(x) = \frac{\sin^2 x}{x^2 - \cos x}$$

Функция не определена в тех точках, где $x^2 = \cos x$. Очевидно, что корни этого уравнения симметричны относительно O. (т.к. если x – корень, то (-x) – тоже корень). Значит область определения симметрична относительно O.

$$f(-x) = \frac{\sin^2(-x)}{(-x)^2 - \cos(-x)} = \frac{\sin^2(x)}{x^2 - \cos x} = f(x)$$

Функция четная.

$$B) f(x) = \frac{\cos 5x + 1}{|x|},$$

 $D(f) = (-\infty; 0) \cup (0; +\infty)$ — симметрична относительно O.

$$f(-x) = \frac{\cos(-5x)+1}{|-x|} = \frac{\cos 5x+1}{|x|} = f(x),$$

Функция четная.

$$\Gamma(x) = \sin^2 x - x^4 + 3 \cos 2 x$$
.

$$D(f) = (-\infty; +\infty)$$
 – симметрична относительно O .

$$f(-x) = \sin^2(-x) - (-x)^4 + 3\cos(-2x) = \sin^2 x - x^4 + 3\cos 2x = 0.$$

a)
$$f(x) = x - \sin x$$

$$D(f) = (-\infty; +\infty)$$
 – симметрична относительно O .

$$f(-x) = -x + \sin(-x) = -(x + \sin x) = -f(x)$$

Функция нечетна.

$$6) f(x) = x^3 \cdot \sin x^2$$

$$D(f) = (-\infty; +\infty)$$
 – симметрична относительно O .

$$f(-x) = (-x)^3 \cdot \sin(-x)^2 = -(x^3 \sin x) = -f(x)$$
.

Функция нечетна.

B)
$$f(x) = \frac{x^2 \sin x}{x^2 - 9}$$
,

$$D(f) = (-\infty; -3) \cup (-3; 3) \cup (3; +\infty)$$
 — симметрична относительно O .

$$f(-x) = \frac{(-x)^2 \sin(-x)}{(-x)^2 - 9} = -\frac{x^2 \sin x}{x^2 - 9} = -f(x).$$

Функция нечетна.

$$\Gamma) f(x) = \frac{x^3 - \sin x}{2 + \cos x},$$

$$D(f) = (-\infty; +\infty)$$
 – симметрична относительно O .

$$f(-x) = \frac{(-x)^3 - \sin(-x)}{2 + \cos(-x)} = -\frac{x^3 - \sin x}{2 + \cos(-x)} = -f(x).$$

Функция нечетна.

668.

$$f(x) = 2x^2 - 3x - 2, -f(\cos x) = -2\cos^2 x + 3\cos x + 2 = 2(1 - \cos^2 x) + 3\cos x$$

$$x = 2\sin^2 x + 3\cos x.$$

669.

$$f(x) = 5x^2 + x + 4, f(\cos x) = 5\cos^2 x + \cos x + 4 = -5(1 - \cos^2 x) + \cos x + 9 = -5\sin^2 x + \cos x + 9.$$

670

$$f(x) = 2x^2 - 5x + 1, f(2 \sin x) = 2.4\sin^2 x - 10 \sin x + 1 = 8 \sin^2 x - 10 \sin x + 1 = 8(\sin^2 x - 1) - 10 \sin x + 9 = -8 \cos^2 x - 10 \sin x + 9 = 9 - 10 \sin x - 8 (1 + tg^2 x).$$

Домашняя контрольная работа.

ВАРИАНТ № 1.

a)
$$\frac{9}{5}$$
; 6) $\frac{6}{5}$.

2. a) Третьей; б) Третьей.

$$\frac{11\pi}{6}$$
; $-\frac{\pi}{6}$

$$\sin\frac{\pi}{4}\cos\frac{2\pi}{3}ctg\frac{\pi}{6} = \frac{\sqrt{2}}{2}\cdot\left(-\frac{1}{2}\right)\sqrt{3} = -\frac{\sqrt{6}}{4}.$$

$$\sin \frac{12}{7}$$
, $\cos \frac{3\pi}{8}$; Знак "+".

$$\frac{(\sin t + \cos t)^2}{1 + 2\sin t \cos t} = \frac{(\sin t + \cos t)^2}{\cos^2 t + 2\sin t \cos t + \sin^2 t} =$$

$$=\frac{\left(\sin t+\cos t\right)^2}{\left(\sin t+\cos t\right)^2}=1\;,\;\;t\neq\frac{3\pi}{4}+\pi k\;\;,\;k\in Z.$$

$$(\sin t + \cos t)^2 + (\sin t - \cos t)^2 = \sin^2 t + 2\sin t \cos t + \cos^2 t +$$

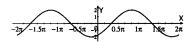
$$+\sin^2 t - 2\sin t \cos t + \cos^2 t = 2.$$

$$\sin t = \frac{12}{13}, \ \frac{\pi}{2} < t < \pi$$
, to есть $\cos t < 0$,

$$\cos t = -\sqrt{1 - \sin^2 t} = -\sqrt{1 - \frac{144}{169}} = \frac{-5}{13},$$

$$tg\ t = \frac{-12}{5}$$
; $ctg\ t = \frac{-5}{12}$.

a)



б)

10.

$$f(x) = x^2 - 5x + 4$$

$$f(\cos x) = \cos^2 x - 5\cos x + 4 = \cos^2 x - 1 - 5\cos x + 5 =$$

$$= 5 - 5\cos x - \sin^2 x.$$

ВАРИАНТ №2.

a)
$$\frac{7\pi}{8}$$
; 6) $\frac{\pi}{8}$.

2. a) Четвертой. б) Третьей.

$$\frac{2\pi}{3}$$
; $-\frac{4\pi}{3}$

$$\sin \frac{5\pi}{6} \cos \frac{3\pi}{4} \cdot tg \frac{\pi}{3} = \frac{1}{2} \cdot \left(-\frac{\sqrt{2}}{2} \right) \sqrt{3} = -\frac{\sqrt{6}}{4} \ .$$

$$\cos \frac{15}{8}$$
, $\sin \frac{11\pi}{15}$; $\cos \frac{15}{8} < 0$, $\sin \frac{11\pi}{15} > 0$. 3hak "-".

$$\frac{(\sin t - \cos t)^2}{1 - 2\sin t \cos t} = \frac{(\sin t - \cos t)^2}{(\sin t - \cos t)^2} = 1 \; , \; t \neq \frac{\pi}{4} + 2\pi k \; , \; k \in \mathbb{Z}.$$

Доказать:
$$(sint + cost)^2 - (sint - cost)^2 = 4 sint cost$$
,

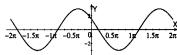
Доказательство:

$$(\sin t + \cos t)^2 - (\sin t - \cos t)^2 = 1 + 2\sin t \cos t - 1 + 2\sin t \cos t = 4\sin t \cos t.$$

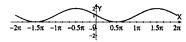
$$\cos t = -\frac{5}{13}$$
, $\pi < t < \frac{3\pi}{2}$, to ects $\sin t < 0$,

$$\sin t = -\sqrt{1 - \left(\frac{5}{13}^2\right)} = -\frac{12}{13}$$
, $tg \ t = \frac{12}{5}$, $ctg \ t = \frac{5}{12}$.

9. a)



б)



10.
$$f(x) = -x^2 + 4x + 3$$
,

$$f(\sin x) = -\sin^2 x + 4\sin x + 3 = 1 - \sin^2 x + 2 + 4\sin x =$$
$$= \cos^2 x + 2 + 4\sin x.$$